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Abstract

In this paper, we consider an integrated pest management model which is impulsively controlled by means of biological
and chemical controls. These controls are assumed to act in a periodic fashion, a nonlinear incidence rate being used to
account for the dynamics of the disease caused by the application of the biological control. The Floquet theory for impul-
sive ordinary differential equations is employed to obtain a condition in terms of an inequality involving the total action of
the nonlinear force of infection in a period, under which the susceptible pest-eradication solution is globally asymptotically
stable. If the opposite inequality is satisfied, then it is shown that the system under consideration becomes uniformly per-
sistent. A biological interpretation of the persistence condition is also provided.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Lately, it has been widely noticed that pesticide abuse has unwelcomed long-term environmental conse-
quences and ultimately damages human health. In some instances, the persistent use of pesticides has
increased the incidence of pest varieties which are resistant to chemicals, rendering chemical controls almost
ineffective, while in other situations the use of such products changed for the worse the balance between the
beneficial and the harmful insects. Consequently, sophisticated and multifaceted ecosystem-based strategies
have been constructed in order to minimize the use of hazardous chemicals.

Integrated pest management (IPM) is an ecological approach which represents a synthesis of techniques of
various natures to control pests, with an accent on those which are potentially less damaging to the environ-
ment. Further, techniques specifically suited to the target pests are preferred, in order to avoid harmful effects
on non-target organisms. Specifically, natural predators, parasites or pathogens of pests may be used, together
with genetically-engineered pest-resistant varieties of crops, mechanical methods of pest control such as traps
or insect barriers and habitat manipulation. In this approach, pesticides are used only as a last resort, when
deemed an absolute necessity. For a historical perspective on the evolution of IPM definitions, see [2].
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The purpose of IPM is often to drive the size of the pest population under certain economically significant
levels, not to eradicate it totally, as the latter can be impossible, cost-ineffective or potentially damaging to the
environment.

In this regard, the economic injury level (EIL), as defined in [17], is the lowest population density of a pest
that will cause economic damage, or the amount of pest injury which will justify the cost of using controls.
Another related type of injury level which can be of interest in certain situations is called the aesthetic injury
level (AIL) and is defined in the same manner, but based on aesthetic rather than economic considerations.
Finally, a relevant parameter is also the action threshold, representing the pest density at which control mea-
sures should be implemented in order to prevent the pest populations to reach the economic (or aesthetic)
injury level. See [12–14,17] for further details.

Chemical control relies mainly on the use of synthetic pesticides to suppress pests. Biological pesti-
cides, derived from plants or microorganisms, such as Bacillus thuringiensis are also of use in chemical
control.

Biological control is defined as the reduction of pest populations by using their natural enemies (see Hoff-
mann and Frodsham [5]). An approach to control insect pests, for instance, is to release parasitoids or patho-
gens. While the first are generally species which develop within or on the host and ultimately kill it, the latter
are viruses, fungi or bacteria which kill or incapacitate the host by causing a disease, or otherwise affect the
biological processes within the host. Another biological approach to pest control is to release pests which are
infected in laboratories, with the purpose to maintain the endemicity of the disease in the target pest popula-
tion, as infected pests generally cause less environmental damage. Usually, biological controls are low-cost and
have minimal negative environmental impact.

Regarding disease transmission, in many papers on epidemiological models treating disease dynamics in
animal populations, use is made of an incidence rate of infection which is bilinear in both the susceptible
and the infective fraction of the total number of individuals. However, the assumption of homogeneous mix-
ing, which motivates the mass action law behind the use of the bilinear incidence rate, may not be accurate
under certain conditions. This is the case, for instance, when the concentration of infective pests is very high
and saturation may occur or if multiple exposure to the disease vector or multiple contacts are required for
disease transmission.

Also, many classical models using bilinear incidence rates exhibit threshold dynamics, that is, if the
so-called basic reproduction number R0 (that is, the average number of new infections produced by a single
infective individual introduced in a totally susceptible population) is greater than 1, then the disease remains
endemic and the endemic equilibrium is globally asymptotically stable, while if R0 is lower than 1, then the
disease dies out, the endemic equilibrium loses its stability and and the disease-free equilibrium becomes glob-
ally asymptotically stable. In this setting, the dynamics of the system is unaffected by the relative sizes of the
initial populations. However, it has been observed that many diseases exhibit yearly variations in a periodic
fashion and that for some diseases the persistence of the infective populations depends on their initial sizes. See
Wang [18] for a more detailed discussion regarding this matter, which also outlines the fact that the nonlin-
earity of the force of infection (that is, the per-susceptible rate of infection, sometimes named the attack rate,
which is generally understood as a function of the total number of infective individuals) may appear as a result
of intervention policies.

Liu et al. [9] studied a SEIRS model with nonlinear incidence rates of type kIpSq, 0 < p 6 1, 0 < q 6 1,
where I denotes the size of the infective population and S denotes the size of the susceptible population,
and observed that while the choice of a q 6¼ 1 does not have a decisive impact on the qualitative behavior
of the system, the choice of a p 6¼ 1 modifies the phase portrait of the system in an obvious manner. In the
latter case, the meaning of the basic reproduction number understood as a threshold parameter for the stabil-
ity of the system vanishes completely, since the disease remains endemic and the system always approaches a
unique endemic equilibrium irrespective of q.

An incidence rate of type gðIÞS has been proposed by Capasso and Serio in [3], with gðIÞ ¼ kI=ð1þ aIÞ.
This incidence rate includes behavioral change and crowding effect for infectives. A general incidence rate
of type gðIÞS with gðIÞ ¼ kIp=ð1þ aIqÞ has been employed by Liu et al. in [10]; see also Hethcote and van
den Driessche [4]. Particular incidence rates of type gðIÞS ¼ kI2S=ð1þ aI2Þ, gðIÞS ¼ KIS=ð1þ aI2Þ have been
used in Ruan and Wang [15], respectively, in Xiao and Ruan [19].
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Models with general nonlinear incidence rates of type gðIÞhðSÞ and f ðI ; SÞ have been treated in Korobeini-
kov and Maini [7] and in Korobeinikov [6], respectively, and it has again been observed that the dependence
on I plays a more prominent role in the stability of the endemic equilibrium than the dependence on S.

In the following, we shall use a general incidence rate of type gðIÞS to model disease transmission, under a
few biologically feasible conditions on the nonlinear force of infection g.

The purpose of this paper is to construct a model of pest control using both biological controls (periodic
release of pests which are infected in laboratories) and chemical controls (pesticide spraying). To account for
the discontinuity of the human activities (that is, pesticides are usually not sprayed all year round, but at fixed
moments of the year), we propose a model in which both controls are used in an impulsive and periodic fash-
ion, with the same period but not in the same time.

This paper is organized as follows: in Section 2, we formulate the main biological assumptions used in the
paper and subsequently employ them to construct our impulsive control model. In Section 3, we introduce a
number of definitions and state a few basic auxiliary results. In Section 4, we study the permanence of our
system. Finally, we conclude in Section 6 with a brief discussion of our main findings.

2. The model

In the following, we denote by S the size of the susceptible pest population, by I the size of the infective pest
population, and suppose that all pests are either susceptible or infective. To formulate our mathematical
model, we rely on the following biological assumptions.

(A1) The intrinsic growth rate of the susceptible pest population in the absence of infection is given by the
nonlinear function SnðSÞ, where n satisfies certain assumptions outlined below.

(A2) The infective pests neither recover nor reproduce.
(A3) The infective pests neither damage crops nor contribute to the total size of the environment-supported

population.
(A4) The incidence rate of the infection is nonlinear in I and given by gðIÞS, where g satisfies certain assump-

tions outlined below.
(A5) Infected pests are released in an impulsive and periodic fashion, in a fixed amount l each time.
(A6) Pesticides are sprayed in an impulsive and periodic fashion, with the same period as the action of releas-

ing infective pests but at different moments. As a result, fixed proportions p1 and p2 of susceptible pests
and infective pests, respectively, are killed each time.

On the basis of the above assumptions, we may formulate the following impulsively controlled model which
characterizes the behavior of the system under consideration.

S0ðtÞ ¼ SðtÞnðSðtÞÞ � gðIðtÞÞSðtÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT ;

I 0ðtÞ ¼ gðIðtÞÞSðtÞ � wIðtÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT ;

DSðtÞ ¼ �d1SðtÞ; t ¼ ðnþ l� 1ÞT ;

DIðtÞ ¼ �d2IðtÞ; t ¼ ðnþ l� 1ÞT ;

DSðtÞ ¼ 0; t ¼ nT ;

DIðtÞ ¼ l; t ¼ nT :

8>>>>>>>><>>>>>>>>:
ðSÞ

Here, T > 0, 0 < l < 1, DuðtÞ ¼ uðtþÞ � uðtÞ for u 2 fS; Ig, 0 6 d1; d2 < 1, n 2 N�.
The functions n and g satisfy the following hypotheses indicated below.

(N) nð0Þ ¼ 0, n is decreasing on ½0;1Þ, limS!1nðSÞ < �w, S 7!SnðSÞ locally Lipschitz on ð0;1Þ.
(G) gð0Þ ¼ 0, g is increasing and globally Lipschitz on ½0;1Þ.

Note that the hypothesis (G) is verified for three commonly used forces of infection, namely for g1ðxÞ ¼ ax,
g2ðxÞ ¼ ax

1þmx, g3ðxÞ ¼ kð1� e�axÞ, as they are strictly increasing on ½0;1Þ and are globally Lipschitz functions
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since their derivatives are uniformly bounded on ½0;1Þ. Also, hypothesis (N) is satisfied if the intrinsic growth
rate of the susceptible population SnðSÞ is given by the logistic growth law ðSnðSÞ ¼ rSð1� S=KÞÞ or by Gom-
pertz’s growth law ðSnðSÞ ¼ rS lnðK=SÞÞ. In what follows, let us denote nð0Þ ¼ r. Let us also observe that, in
view of (G), gðxÞ 6 Lx for x P 0, where by L we denote the Lipschitz constant of g.

Models related to ours have been studied by Zhang and Chen in [20], where the intrinsic growth rate of the
susceptible population is of logistic type, which corresponds to nðSÞ ¼ 1� S=K, but a particular incidence rate
of type IhðSÞ is used rather than of type gðIÞS, and by Liu et al. in [8], where an impulsively controlled system
which models the dynamics of a prey-dependent consumption model is studied by similar methods. See also
Song and Xiang [16] where an IPM strategy for a two-prey one-predator model with stage structure for pred-
ator is described, or Liu et al. [11], where the impulsive controllability of a predator–prey system with Ivlev
functional response is studied. Note that, from a formal point of view, the above-mentioned predator–prey
models are related to our model.

It is also to be noted that our model can accommodate some situations in which the infective pest
population contributes to the growth of the total population size towards the carrying capacity of the envi-
ronment, that is, when (A3) is only partially satisfied. Precisely, if the first equation in our model is substituted
by

S0ðtÞ ¼ SðtÞ 1� SðtÞ þ IðtÞ
K

� �
� gðIðtÞÞSðtÞ;

then this equation can be rearranged as

S0ðtÞ ¼ SðtÞ 1� SðtÞ
K

� �
� gðIðtÞÞ þ IðtÞ

K

� �
SðtÞ;

which again fits our framework. Moreover, the decreases in the number of susceptible and, respectively, of
infective pests in the third and fourth equation of (S) can also be achieved through selective catching rather
than by pesticide poisoning only.

Under these assumptions, it is seen that the Cauchy problem for the system (S) has a unique positive and
global solution for positive initial data ðSð0Þ; Ið0ÞÞ, while if the initial data is strictly positive, then the corre-
sponding solution is also unique, strictly positive and global, that is, the Cauchy problem for (S) with positive
initial data is biologically well-posed.

3. Preliminaries

In this section, we shall introduce some definitions and notations and state a few basic results which will be
useful in what follows.

Let us denote by f ¼ ðf1; f2Þ the mapping defined by the right-hand side of (S). Let also V0 be the set of
functions V : Rþ � R2

þ ! Rþ which are locally Lipschitz in the second variable, continuous on
ððnþ l� 1ÞT ; nT � � R2

þ and on ðnT ; ðnþ lÞT � � R2
þ and for which the limits limðt;yÞ!ððnþl�1ÞTþ;xÞV ðt; yÞ ¼

V ððnþ l� 1ÞTþ; xÞ and limðt;yÞ!ðNTþ;xÞV ðt; yÞ ¼ V ðnTþ; xÞ exist and are finite for x 2 R2
þ and n 2 N�.

For V 2V0, we define the upper right Dini derivative of V with respect to the system (S) at
ðt; xÞ 2 ððnþ l� 1ÞT ; nT Þ � R2

þ or ðnT ; ðnþ lÞT Þ � R2
þ by

DþV ðt; xÞ ¼ lim suph#0
1

h
½V ðt þ h; xþ hf ðt; xÞÞ � V ðt; xÞ�:

We now indicate a comparison result for solutions of impulsive differential inequalities which allows us to esti-
mate the values of the solutions of (S). We suppose that h : Rþ � Rþ ! R satisfies the following hypotheses.

(H) h is continuous on ððnþ l� 1ÞT ; nT � � Rþ and on ðnT ; ðnþ lÞT � � Rþ and the limits limðt;yÞ!ððnþl�1ÞTþ;xÞ
hðt; yÞ ¼ hððnþ l� 1ÞTþ; xÞ, limðt;yÞ!ðNTþ;xÞhðt; yÞ ¼ hðnTþ; xÞ exist and are finite for x 2 Rþ and n 2 N�.
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Lemma 3.1 ([1]). Let V 2V0 and assume that

DþV ðt; xðtÞÞ 6 hðt; V ðt; xðtÞÞÞ; t 6¼ ðnþ l� 1ÞT ; nT ;

V ðt; xðtþÞÞ 6 w1
nðV ðt; xðtÞÞÞ; t ¼ ðnþ l� 1ÞT ;

V ðt; xðtþÞ 6 w2
nðV ðt; xðtÞÞÞ; t ¼ nT ;

8><>: ð3:1Þ

where h : Rþ � Rþ ! R satisfies (H) and w1
n;w

2
n : Rþ ! Rþ are non-decreasing for all n 2 N. Let rðtÞ be the

maximal solution of the scalar impulsive differential equation

u0ðtÞ ¼ hðt; uðtÞÞ; t 6¼ ðnþ l� 1ÞT ; nT ;

uðtþÞ ¼ w1
nðuðtÞÞ; t ¼ ðnþ l� 1ÞT ;

uðtþÞ ¼ w2
nðuðtÞÞ; t ¼ nT ;

uð0þÞ ¼ u0

8>>><>>>: ð3:2Þ

defined on ½0;1Þ. Then V ð0þ; x0Þ 6 u0 implies that V ðt; xðtÞÞ 6 rðtÞ for all t P 0, where xðtÞ is an arbitrary solu-

tion of (3.1).

Note that the maximality property used in Lemma 3.1 refers to the maximality of values rather than to the
maximality of the domain and that under appropriate regularity conditions (3.2) has a unique solution. In that
case r becomes the unique solution of (3.2). We now indicate a result which provides an estimation for the
solution of a system of differential inequalities.

Lemma 3.2 ([1]). Let the function u 2 PC1ðRþ;RÞ satisfy the inequalities

du
dt 6 pðtÞuðtÞ þ f ðtÞ; t 6¼ sk; t > 0;

uðskþÞ 6 dkuðskÞ þ hk; k P 0;

uð0þÞ 6 u0;

8><>: ð3:3Þ

where p; f 2 PCðRþ;RÞ and dk P 0, hk and u0 are constants and ðskÞkP0 is a strictly increasing sequence of po-

sitive real numbers. Then, for t > 0,

uðtÞ 6 u0

Y
0<sk<t

dk

 !
e
R t

0
pðsÞds þ

Z t

0

Y
06sk<t

dk

 !
e
R t

s
pðsÞdsf ðsÞdsþ

X
0<sk<t

Y
sk<sj<t

dj

 !
e

R t

sk
pðsÞds

hk:

In the above, by PCðRþ;RÞ ðPC1ðRþ;RÞÞ is meant the class of real piecewise continuous (real piecewise con-
tinuously differentiable) functions defined on ½0;1Þ. For other results on impulsive differential equations, see
Bainov and Simeonov [1]. Using the above Lemma, it is now possible to prove that all solutions of (S) are
bounded.

Lemma 3.3. There is M > 0 such that SðtÞ 6 M , IðtÞ 6 M for t P 0.

Proof. Let us define u : Rþ ! Rþ by

uðtÞ ¼ SðtÞ þ IðtÞ; t > 0:

Then

du
dt
þ wu ¼ S nðSÞ þ wð Þ; t > 0; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT : ð3:4Þ

Since limS!1nðSÞ < �w, it follows that the right-hand side of (3.4) is bounded from above and consequently
there is C > 0 such that

Dþuþ wu 6 C; t > 0; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT :

One also sees that

uððnþ l� 1ÞTþÞ 6 ð1� dÞuððnþ l� 1ÞT Þ
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and

uðnTþÞ ¼ uðnT Þ þ l;

where d ¼ minðd1; d2Þ. It the follows from Lemma 3.2 that

uðtÞ 6 uð0þÞ
Y

0<ðnþl�1ÞT<t

ð1� dÞ
" #

e�wt þ C
Z t

0

Y
s6ðnþl�1ÞT<t

ð1� dÞ
" #

e�wðt�sÞdsþ
X

0<nT<t

le�wðt�nT Þ; t > 0;

ð3:5Þ
so

uðtÞ 6 uð0þÞe�wt þ Cð1� e�wtÞ
w

þ l
ewT

ewT � 1
; t > 0; ð3:6Þ

and since the limit of the right-hand side of (3.6) as t!1 is C=wþ lewT=ðewT � 1Þ, it easily follows that u is
bounded on ½0;1Þ. h

We need now state a few basic results regarding the Floquet theory of impulsive ordinary differential equa-
tions. Let us consider the system

x0ðtÞ ¼ AðtÞx; t 6¼ sk; t 2 R;

Dx ¼ Bkx; t ¼ sk; sk < skþ1; k 2 Z;

�
ð3:7Þ

under the following hypotheses.

(H1) Að�Þ 2 PCðR;MnðRÞÞ and there is T > 0 such that Aðt þ T Þ ¼ AðtÞ for all t P 0.
(H2) Bk 2 MnðRÞ, detðIn þ BkÞ 6¼ 0 for k 2 Z.
(H3) There is q 2 N� such that Bkþq ¼ Bk, skþq ¼ sk þ T for k 2 Z.

Let UðtÞ be a fundamental matrix of (3.7). Then there is a unique nonsingular matrix M 2 MnðRÞ such that
Uðt þ T Þ ¼ UðtÞM for all t 2 R, which is called the monodromy matrix of (3.7) corresponding to U. Actually,
all monodromy matrices of (3.7) are similar and consequently they have the same eigenvalues k1; k2; . . . ; kn,
which are called the Floquet multipliers of (3.7). Under these hypotheses, the following result holds.

Lemma 3.4 ([1]). Suppose that conditions (H1)–(H3) hold. Then

1. The system (3.7) is stable if and only if all Floquet multipliers kk, 1 6 k 6 n satisfy jkkj 6 1 and if jkkj ¼ 1, then
to kk there corresponds a simple elementary divisor.

2. The system (3.7) is asymptotically stable if and only if all Floquet multipliers kk; 1 6 k 6 n satisfy jkkj < 1.

3. The system (3.7) is unstable if there is a Floquet multiplier kk such that jkkj > 1.

We now describe some properties of the subsystem

I 0ðtÞ ¼ �wIðtÞ; t 6¼ nT ; ðnþ l� 1ÞT ;

DIðtÞ ¼ �d2IðtÞ; t ¼ ðnþ l� 1ÞT ;

DIðtÞ ¼ l; t ¼ nT ;

Ið0þÞ ¼ I0;

8>>>><>>>>: ð3:8Þ

which describes the dynamics of the susceptible pest eradication state. It will be seen that the system formed
with the first three equations of (3.8) has a periodic solution to which all solutions of (3.8) tend as t!1. We
shall label this periodic solution with I�w, rather than, say, with I�w;d2;l

, as systems of type (3.8) occur throughout
the paper for different w0s but always with the same d2 and l so there is no danger of confusion.

Lemma 3.5. The system constructed with the first three equations in (3.8) has a positive T-periodic solution I�w.

With this notation, the following properties are satisfied.
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1. limt!1jIðtÞ � I�wðtÞj ¼ 0 for all solutions IðtÞ of (3.8).

2. suptP0jI�w1
ðtÞ � I�w2

ðtÞj 6 lCjw1 � w2j for all w1;w2 > 0, where C ¼ Cðw1;w2; d2; T Þ.

Proof. Obviously, one should have

I�wðtÞ ¼ e�wtI�wð0þÞ; t 2 ð0; lT �;
I�wðtÞ ¼ e�wtI�wð0þÞð1� d2Þ; t 2 ðlT ; T �:

By the T-periodicity requirement, one obtains that

e�wT ð1� d2ÞI�wð0þÞ þ l ¼ I�wð0þÞ
so

I�wð0þÞ ¼
l

1� e�wT ð1� d2Þ
:

Consequently, the T-periodic solution I�w of (3.8) is given by

I�wðtÞ ¼
le�wðt�ðn�1ÞT Þ

1�e�wT ð1�d2Þ
; t 2 ððn� 1ÞT ; ðnþ l� 1ÞT �;

le�wðt�ðn�1ÞT Þð1�d2Þ
1�e�wT ð1�d2Þ ; t 2 ððnþ l� 1ÞT ; nT �:

8<: ð3:8Þ

Let I be any solution of (3.8). As I � I�w verifies the system

ðI � I�wÞ
0 ¼ �wðI � I�wÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT ;

DðI � I�wÞ ¼ �d2ðI � I�wÞ; t ¼ ðnþ l� 1ÞT ;

DðI � I�wÞ ¼ 0; t ¼ nT ;

8><>:
it is seen that

IðtÞ ¼
e�wðt�ðn�1ÞT Þ I0 � l

1�e�wT ð1�d2Þ

� �
ð1� d2Þn�1 þ I�wðtÞ; t 2 ððn� 1ÞT ; ðnþ l� 1ÞT �

e�wðt�ðn�1ÞT Þ I0 � l
1�e�wT ð1�d2Þ

� �
ð1� d2Þn þ I�wðtÞ; t 2 ððnþ l� 1ÞT ; nT �

8><>: ð3:9Þ

and it follows that for any solution IðtÞ of (3.8), limt!1jIðtÞ � I�wðtÞj ¼ 0. The estimation sought for at the sec-
ond point can be proved by direct computation. h

4. The extinction of the susceptible pest population

In this section, we study the situation in which the susceptible pest population tends to extinction. This sit-
uation occurs if a certain condition on the total action of the nonlinear force of infection in a period near the
infective pest-only equilibrium is satisfied.

Theorem 4.1. The susceptible pest-eradication solution ð0; I�wðtÞÞ is globally asymptotically stable provided thatZ T

0

gðI�wðsÞÞds > rT þ lnð1� d1Þ: ð4:10Þ

Proof. In order to justify the use of (4.10), we first study the local stability of ð0; I�wðtÞÞ by using small ampli-
tude perturbation methods.

Let us denote

SðtÞ ¼ uðtÞ
IðtÞ ¼ vðtÞ þ I�wðtÞ;

�
ð4:11Þ

in which u and v are understood to be small amplitude perturbations. Substituting (4.11) into the first two
equations of (S), one obtains
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u0ðtÞ ¼ uðtÞnðuðtÞÞ � gðvðtÞ þ I�wðtÞÞuðtÞ;
v0ðtÞ ¼ gðvðtÞ þ I�wðtÞÞuðtÞ � wvðtÞ:

�
ð4:12Þ

The corresponding linearization of (4.12) at (0, 0) is

u0ðtÞ ¼ ruðtÞ � gðI�wðtÞÞuðtÞ;
v0ðtÞ ¼ gðI�wðtÞÞuðtÞ � wvðtÞ

�
ð4:13Þ

and so a fundamental matrix of (4.13) is

ULðtÞ ¼
e
R t

0
r�gðI�wðsÞÞ½ � ds

0R t
0

e�wðt�sÞe
R s

0
ðr�gðI�wðsÞÞÞdsgðI�wðsÞÞds e�wt

0@ 1A: ð4:14Þ

The linearization of the jump conditions at ðnþ l� 1ÞT reads as

Du ¼ �d1uðtÞ; t ¼ ðnþ l� 1ÞT ;

Dv ¼ �d2vðtÞ;

�
ð4:15Þ

while the linearization of the jump conditions at nT reads as

Du ¼ 0; t ¼ nT ;

Dv ¼ 0:

�
ð4:16Þ

Consequently, the local stability of the susceptible pest-eradication solution ð0; I�wðtÞÞ can be analyzed by
studying the eigenvalues of the monodromy matrix

M1 ¼
1� d1 0

0 1� d2

� �
ULðT Þ

As the eigenvalues of M1 are

k1 ¼ ð1� d1Þe
R T

0
½r�gðI�wðsÞÞ�ds

; k2 ¼ ð1� d2Þe�wT

and 0 < k2 < 1, it follows by Lemma 3.4 that ð0; I�wðtÞÞ is locally asymptotically stable provided that

ð1� d1Þe
R T

0
½r�gðI�wðsÞÞ�ds

< 1

that is, condition (4.10) holds. We now prove that ð0; I�wðtÞÞ is actually globally asymptotically stable prov-
ided that condition (4.10) is satisfied. We first show that SðtÞ ! 0 as t!1. To this purpose, choose e1 > 0
such thatZ T

0

gðI�wðsÞ � e1Þds > rT þ lnð1� d1Þ ð4:17Þ

(note that such a choice is feasible, as jgðI�wðsÞ � e1Þ � gðI�wðsÞÞj 6 Le1). Let us also denote

n ¼ ð1� d1ÞerT�
R T

0
gðI�wðsÞ�e1Þ ds

and observe that 0 < n < 1. It is seen that

I 0ðtÞ ¼ gðIðtÞÞSðtÞ � wIðtÞP �wIðtÞ

and so, by Lemma 3.1, IðtÞP eI ðtÞ, where eI ðtÞ is the solution of (3.8) with the same initial data at 0þ as I. As
any such solution becomes close to I�wðtÞ for t!1, by Lemma 3.5, there is some T 1 > 0 such that
IðtÞP I�wðtÞ � e1 for t P T 1. For the sake of simplicity, we suppose that IðtÞ > I�wðtÞ � e1 for all t > 0. One then
obtains that

S0ðtÞ ¼ SðtÞnðSðtÞÞ � SðtÞgðIðtÞÞ
6 SðtÞ½nðSðtÞÞ � gðI�wðtÞ � e1Þ�; t 6¼ ðnþ l� 1ÞT
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and it consequently follows that

S0ðtÞ
SðtÞ 6 nðSðtÞÞ � gðI�wðtÞ � e1Þ; t 6¼ ðnþ l� 1ÞT :

By integrating the above inequality on ððnþ l� 1ÞT ; ðnþ lÞT �, one obtains

ln Sððnþ lÞT Þ � ln Sððnþ l� 1ÞTþÞ 6
Z ðnþlÞT

ðnþl�1ÞT
nðSðsÞÞ � gðI�wðsÞ � e1Þ
� �

ds

and so

ln Sððnþ lÞT Þ � ln Sððnþ l� 1ÞT Þ � lnð1� d1Þ 6
Z ðnþlÞT

ðnþl�1ÞT
r � gðI�wðsÞ � e1Þ
� �

ds:

It then follows that

Sððnþ lÞT Þ 6 Sððnþ l� 1ÞT Þn
and consequently

Sððnþ lÞT Þ 6 SðlT Þnn

which implies that Sððnþ lÞT Þ ! 0 as n!1. Also,

S0ðtÞ
SðtÞ ¼ nðSðtÞÞ � gðIðtÞÞ 6 r

so

SðtÞ 6 Sððnþ l� 1ÞTþÞerðt�ðnþl�1ÞT Þ; t 2 ððnþ l� 1ÞT ; ðnþ lÞT �
which implies that

SðtÞ 6 ð1� d1ÞSððnþ l� 1ÞT ÞerT ; t 2 ððnþ l� 1ÞT ; ðnþ lÞT �
and consequently SðtÞ ! 0 as t!1. We now prove that IðtÞ ! I�wðtÞ as t!1. To this purpose, let
0 < e2 < w=L. Since SðtÞ ! 0 as t!1, there is T 2 > 0 such that SðtÞ < e2 for t P T 2. For the sake of simplic-
ity, we suppose that SðtÞ < e2 for all t > 0. Since

I 0ðtÞ ¼ gðIðtÞÞSðtÞ � wIðtÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT

and gðxÞ 6 Lx for x P 0, it follows that

�wIðtÞ 6 I 0ðtÞ 6 �ðw� e2LÞIðtÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT :

By Lemma 3.1, it follows thateI 1ðtÞ 6 IðtÞ 6 eI 2ðtÞ;
where eI 1 and eI 2 are the solution of (3.8) with the same initial data at 0þ as I and the solution of (3.8) with w

changed into w� e2L and the same initial data at 0+, respectively. As these solutions become close to I�wðtÞ,
respectively, to I�w�e2LðtÞ, it follows that, for t large enough,

I�wðtÞ � e2 < IðtÞ < I�w�e2LðtÞ þ e2

and the conclusion now follows from Lemma 3.5. h

Note that from (4.10) it follows that the susceptible pest eradication solution is globally asymptotically sta-
ble whenever d1 > 1� e�rT , that is, the global asymptotic stability of this solution can be achieved by control-
ling d1 alone, which is a natural result (repeatedly retiring enough many susceptible individuals will make the
susceptible pest eradication solution globally asymptotically stable). The same result can be achieved provided
that T is small enough, but depending on the value of d1, that is, for T < ð1=rÞ lnð1=ð1� d1ÞÞ.

By (3.8) and (3.9), it is noted that liml!1
R T

0 gðI�wðsÞÞds ¼ þ1 for large classes of functions g, so the impul-
sive control is also successful provided that l is large enough. The impulsive control is then, theoretically

798 P. Georgescu, G. Moros�anu / Applied Mathematics and Computation 190 (2007) 790–803



speaking, always successful, provided that it is applied often enough (T is small), enough many susceptible
pests die due to pesticide spraying (d1 is large) or if enough many infective pests are released periodically
(l is large). However, in practical contexts, l cannot be arbitrarily large, and T can be limited by other coor-
dinates of human activity, as not enough active time can be sometimes dedicated to pesticide spraying alone.
Still, as noted in Section 1, the purpose of the IPM is actually to drive the size of the susceptible pest popu-
lation below the EIL or the AIL (the infective pests do not count here, as they are assumed not to damage
crops), rather than to eradicate the pests completely, so the controls may be successful even if (4.10) is not
satisfied, provided that the size of the susceptible pest population stabilizes under the EIL (or AIL).

It is perhaps also worth noting that if gðxÞ ¼ x for x P 0, then (4.10) reduces to

l >
w rT þ lnð1� d1Þð Þ 1� e�wT ð1� d2Þð Þ

1� d2e�wlT � e�wT ð1� d2Þ
: ð4:18Þ

Combined with a similar rewrite of (5.19) in the following section, this establishes the existence of a threshold
parameter for the stability of the system, denoted lc and equal to the right-hand side of (4.18). That is, if
l > lc then the susceptible pest-eradication solution is globally asymptotically stable, while if l < lc, then sus-
ceptible pest-eradication solution loses its stability and (S) becomes uniformly persistent.

5. The permanence of the system

In this section, we study the permanence of the system. To this purpose, we need now introduce the follow-
ing definition.

Definition 5.1. The system (S) is said to be permanent (uniformly persistent) if there are m;M > 0 such that for
each solution with positive initial data ðSð0Þ; Ið0ÞÞ, one has m 6 SðtÞ; IðtÞ 6 M , for enough large t.

Of course, if the system (S) is permanent, then both the susceptible and infective pest classes persist in time
and minimal numerical levels of subsistence which do not depend on the initial population sizes are assured for
each class.

We now prove that the system (S) is permanent provided that the reverse of (4.10) holds.

Theorem 5.1. The system (S) is permanent provided thatZ T

0

gðI�wðsÞÞds < rT þ lnð1� d1Þ: ð5:19Þ

Proof. It has already been shown that, given e > 0, one may find T e > 0 such that IðtÞ > I�wðtÞ � e for all
t > T e. Now, it is enough to choose e < le�wT ð1�d2Þ

1�e�wT ð1�d2Þ
and observe that in this situation one has

IðtÞ > le�wT ð1� d2Þ
1� e�wT ð1� d2Þ

� e for all t > T e:

For the sake of simplicity, let us suppose that the above estimation is satisfied for all t > 0.
Also, we know that S and I are bounded, by Lemma 3.3. It now remains to prove that SðtÞP m1 for some

m1 > 0 and t large enough.
First, let m3 > 0 and e1 > 0 be small enough, so that

m3 <
w
L
; nðm3ÞT þ lnð1� d1Þ >

Z T

0

gðI�w�m3LðtÞ þ e1Þdt: ð5:20Þ

As a first step, we now show that one cannot have SðtÞ < m3 for all t > 0.
We argue by contradiction. Suppose that SðtÞ < m3 for all t > 0.
Then

I 0ðtÞ ¼ gðIðtÞÞSðtÞ � wIðtÞ 6 �ðw� Lm3ÞIðtÞ; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT :
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By Lemma 3.1, it follows that IðtÞ 6 eI 1ðtÞ, where eI 1ðtÞ is the solution of (3.8) with the same initial data at 0þ
as I and w changed into w� Lm3. As this solution becomes close to I�w�Lm3

ðtÞ as t!1, it follows that there is
T 1 > 0 such that IðtÞ 6 I�w�Lm3

þ e1 for t P T 1.
Let n large enough, so that ðnþ l� 1ÞT > T 1. One then gets

S0ðtÞP SðtÞ½nðm3Þ � gðI�w�m3LðtÞ þ e1Þ�; t 6¼ ðnþ l� 1ÞT ; t 6¼ nT ; t P T 1: ð5:21Þ

By integrating the above inequality on ððnþ l� 1ÞT ; ðnþ lÞT �, one obtains

ln Sððnþ lÞT Þ � ln Sððnþ l� 1ÞTþÞP nðm3ÞT �
Z ðnþlÞT

ðnþl�1ÞT
gðI�w�m3LðtÞ þ e1Þdt

and so

ln Sððnþ lÞT Þ � ln Sððnþ l� 1ÞT Þ � lnð1� d1ÞP nðm3ÞT �
Z ðnþlÞT

ðnþl�1ÞT
gðI�w�m3LðtÞ þ e1Þdt:

Let us denote

g ¼ ð1� d1Þe
nðm3ÞT�

R ðnþlÞT

ðnþl�1ÞT
gðI�w�m3LðtÞþe1Þ dt ð5:22Þ

and observe that, by (5.20), g > 1. It then follows that

Sððnþ lÞT ÞP Sððnþ l� 1ÞT Þg
and consequently

Sððnþ lÞT ÞP SðlT Þgn; ð5:23Þ
which implies that Sððnþ lÞT Þ ! 1 as n!1, which contradicts the boundedness of S. It is then seen that
one cannot have SðtÞ < m3 for all t > 0 and consequently there is t1 > 0 such that Sðt1ÞP m3.

If Sðt1ÞP m3 for all t P t1, then (S) is persistent and there is nothing left to prove. Otherwise, SðtÞ < m3 for
some t P t1. Let us denote

t� ¼ inf t > t1; SðtÞ < m3f g:
To continue our investigation, we need to distinguish whether or not t� ¼ ðnþ l� 1ÞT for some n, so that we
could discuss the value of Sðt�Þ. Note that the discussion has to be made in terms of whether or not
t� ¼ ðnþ l� 1ÞT for some n and not in terms of whether or not t� ¼ nT for some n, as the jumps of S occur
only at t ¼ ðnþ l� 1ÞT .

Case A, t� ¼ ðn1 þ l� 1ÞT for some n1 2 N�.
In this situation, SðtÞP m3 for t 2 ½t1; t�� and therefore

Sðt�þÞ ¼ ð1� d1ÞSðt�ÞP ð1� d1Þm3

and also

Sðt�þÞ 6 m3:

Choose n2, n3 2 N� so that

ðn2 � 1ÞT >
1

�wþ Lm3

ln
e1

M þ l
1�e�ðw�Lm3Þ

ð5:24Þ

ð1� d1Þn2 en2g1T gn3 > 1; ð5:25Þ

where g is given by (5.22) and g1 is defined as

g1 ¼ nðm3Þ � LM < 0:

Note that n2, n3 do not depend on t�.
We now show that there should be t2 2 ðt�; t� þ n2T þ n3T � such that Sðt2Þ > m3. Suppose that this is not the

case. Then IðtÞ 6 eI ðtÞ on ðt�; t� þ n2T þ n3T �, where eI is the solution of (3.8) with the same initial data at t�þ as
I and w changed into w� Lm3.
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In the similar way to the derivation of (3.9), it is seen that

eI ðtÞ¼ e�ðw�m3LÞðt�n1T Þ eI ðn1TþÞ� l
1�ð1�d2Þe�ðw�m3LÞT

h i
ð1�d2Þn�ðn1þ1Þ þ I�w�m3LðtÞ; t2 ððn�1ÞT ; ðnþ l�1ÞT �;

e�ðw�m3LÞðt�n1T Þ eI ðn1TþÞ� l
1�ð1�d2Þe�ðw�m3LÞT

h i
ð1�d2Þn�n1þ I�w�m3LðtÞ; t2 ððnþ l�1ÞT ;nT �;

8><>:
ð5:26Þ

for n P n1 þ 1. By the above relations, it follows that

eI ðtÞ � I�w�m3LðtÞ
			 			 < e�ðw�m3LÞðt�n1T Þ eI ðn1TþÞ � l

1� ð1� d2Þe�ðw�m3LÞT

				 				 ð5:27Þ

for t > ðnþ l� 1ÞT , n P n1 þ 1.
Also, sinceeI ðn1TþÞ ¼ e�ðw�m3LÞðn1T�t�ÞeI ðt�þÞ þ l;

one has that

eI ðn1TþÞ � l
1� ð1� d2Þe�ðw�m3LÞT

				 				 ¼ e�ðw�m3LÞð1�lÞT Iðt�þÞ þ l� l
1� ð1� d2Þe�ðw�m3LÞT

				 				
6 M þ l

1� e�ðw�m3LÞT : ð5:28Þ

For t P n1T þ ðn2 � 1ÞT , it follows thateI ðtÞ � I�w�m3LðtÞ
			 			 6 e�ðw�m3LÞðn2�1ÞT M þ l

1� e�ðw�m3LÞT

� �
; ð5:29Þ

by (5.24), (5.27) and (5.28). By (5.29), it is then seen that

IðtÞ 6 I�w�m3LðtÞ þ e1; for n1T þ ðn2 � 1ÞT 6 t 6 t� þ n2T þ n3T

and therefore (5.21) holds for n1T þ ðn2 � 1ÞT 6 t 6 t� þ n2T þ n3T . As a result, by the same argument used
for the derivation of (5.23), we deduce that

Sðt� þ n2T þ n3T ÞP Sðt� þ n2T Þgn3 ; ð5:30Þ
where g is given by (5.22).

Since gðIðtÞÞ 6 LIðtÞ 6 LM , one obtains that

S0ðtÞP SðtÞ½nðm3Þ � LM �; t 6¼ ðnþ l� 1ÞT ;

SðtþÞ ¼ ð1� d1ÞSðtÞ; t ¼ ðnþ l� 1ÞT ;

�
ð5:31Þ

for t 2 ½t�; t� þ n2T �. Integrating the inequality in (5.31) over ðt�; t� þ n2T �, one obtains that

Sðt� þ n2T ÞP m3ð1� d1Þn2 en2g1T : ð5:32Þ
By (5.30) and (5.32), one may deduce that

Sðt� þ n2T þ n3T ÞP m3ð1� d1Þn2 en2g1T gn3 :

By (5.25), one obtains that Sðt� þ n2T þ n3T Þ > m3, which is a contradiction, as it was supposed that SðtÞ 6 m3

on ðt�; t� þ n2T þ n3T �. It then follows that there is t1 2 ðt�; t� þ n2T þ n3T � for which Sðt1Þ > m3. Let us denote
~t�1 ¼ inf t>t�fSðtÞ > m3g. Obviously, ~t�1 6 t� þ n2T þ n3T . Also, SðtÞ 6 m3 for t 2 ðt�;~t�1Þ, while Sð~t�1ÞP m3.

As in the derivation of (5.32), one may find that

SðtÞP m3ð1� d1Þn2þn3 eðn2þn3Þg1T ; t 2 ðt�;~t�1Þ

as ~t�1 6 ðn2 þ n3ÞT , and so, if we denote,

m03 ¼ m3ð1� d1Þn2þn3 eðn2þn3Þg1T ;
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we see that SðtÞP m03 for t 2 ðt�;~t�1Þ and so m03 may be taken as a persistency constant for S on ðt�;~t�1Þ. As
Sð~t�1ÞP m3, our argument may be continued in the same manner.

Case B t� 6¼ ðnþ l� 1ÞT for all n 2 N�.
In this situation, S is continuous at t� and SðtÞP m3 for t 2 ½t1; t��, while Sðt�Þ ¼ m3, as t� is not a jump

point for S. Suppose that t� 2 ððn2 þ l� 1ÞT ; ðn2 þ lÞT Þ for some n2 2 N�.
If SðtÞ 6 m3 on the whole interval ðt�; ðn2 þ lÞT �, then one may continue exactly as in Case A; we omit the

details. If there is t 2 ðt�; ðn2 þ lÞT Þ such that SðtÞ > m3, then let us denote ~t�2 ¼ inf t>t�fSðtÞ > m3g. Obviously,
~t�2 2 ðt�; ðn2 þ lÞT �, SðtÞ 6 m3 for t 2 ðt�;~t�2Þ and Sð~t�2Þ ¼ m3 by continuity. We now study the persistency
constant of S on ðt�;~t�2Þ.

Since SðtÞ 6 m3 on ðt�;~t�2Þ, it is seen that

S0ðtÞP SðtÞ nðm3Þ � LM½ �; t 6¼ ðnþ l� 1ÞT ;

SðtþÞ ¼ ð1� d1ÞSðtÞ; t ¼ ðnþ l� 1ÞT ;

�
ð5:33Þ

for t 2 ðt�;~t�2Þ. Integrating (5.33), we obtain that

SðtÞP Sðt�Þeg1ðt�t�Þ P m3 eg1T

and so, if we denote

m04 ¼ m3 eg1T

we see that SðtÞP m04 for t 2 ðt�;~t�2Þ and so m04 may be taken as a persistency constant for S on ðt�;~t�2Þ. As
Sð~t�2Þ ¼ m3, our argument may be continued in the same manner. h

We now give an approximative interpretation of (5.19). Let us suppose that ðSðtÞ; IðtÞÞ approaches
ð0; I�wðtÞÞ. In this situation, it is seen that

R T
0 gðI�wðsÞÞds approximates the total (per-susceptible) loss of

susceptibles due to new infections in a period T, while rT approximates the total (per-susceptible) number of
newborn susceptibles, as nð0Þ ¼ r. Also, lnð1� d1Þ is a correction term accounting for the loss of susceptibles
due to pesticide spraying. If (5.19) is satisfied, then this inequality prevents ðSðtÞ; IðtÞÞ from being arbitrarily
close to ð0; I�wðtÞÞ, as there is a net gain of susceptibles near ð0; I�wðtÞÞ, while the opposite of (5.19) makes
ð0; I�wðtÞÞ globally asymptotically stable, since there is a net loss of susceptibles near ð0; I�wðtÞÞ.

6. Conclusion

In this paper, an integrated pest management model involving impulsive and periodic biological and chem-
ical controls is investigated. The biological control consists in the periodic release of infective pests, while the
chemical control consists in pest poisoning through the use of pesticides. A nonlinear incidence rate of type
gðIÞS is used to describe disease transmission, where the nonlinear function g represents the so-called force
of infection, or attack rate. By means of Floquet theory for impulsive differential equations, it is seen that
if a certain inequality involving the total action of the nonlinear force of infection in a period is satisfied, then
the susceptible pest-eradication solution is globally asymptotically stable, while if the opposite of this inequal-
ity is satisfied then the susceptible pest-eradication solution loses its stability and the system under consider-
ation becomes uniformly persistent.

It is also observed that when g is a linear function, the above results establish the existence of a threshold
parameter lc for the stability of the system. A biological interpretation of the persistency condition is provided
and, in addition, is observed that, theoretically speaking, the impulsive controls can be always made to succeed
if enough resources are invested, although in concrete situations these requirements may not necessarily be
feasible.
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