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a b s t r a c t

We formulate a model of HIV transmission which keeps track of two interacting high-
risk groups, namely female sex workers (FSW) and male injecting drug users (IDU),
along with a third “bridge” group of male drug-free clients (DFC). To determine
the global asymptotic behaviour of the model, we first consider the dynamics of an
n-group SIR model featuring abstract, unspecified and possibly nonlinear forces of
infection utilising the graph theoretic approach of Li and Shuai. It is determined that
the basic reproduction number R0, computed via the next generation method, is a
threshold parameter for the stability of the disease-free and the endemic equilibrium.
Global stability results for the model with two interacting high-risk groups are then
obtained via suitable particularisations. We obtained partial reproduction numbers
for each disease transmission route in the model, via which and our analytical results
we are able to establish that if the goal of an intervention measure is to eradicate,
significant reduction in transmission between FSW and IDU is needed, in addition to
reduction in other routes of transmission. On the other hand, if the aim is to mitigate
the disease spread, reduction in any one or more routes of disease transmission will
be useful, albeit reduction in transmission between the two high-risk groups will be
more impactful than others.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

HIV/AIDS model integrating high-risk groups has been a subject of significant interest. In particular,
model with a high-risk group of female sex workers (FSW) and non-high-risk group of young unmarried
males has been used to explain the rapid spread of HIV/AIDS in Thailand in the early 90s [1]. Another
general model which incorporates treatment and behaviour change for HIV-infected FSW and a bridge
population of young un-partnered males was proposed and analysed in [2,3]. A structured community model
with two classes of direct (high activity) and indirect (low activity) FSW and two classes of sexually active
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male clients (highly active and less active) has been formulated in [3,4]. However, none of the articles above
involve male injecting drug users (IDU) since there is little evidence of significant interaction between the
FSW and IDU in Thailand at that time.

To provide real world background motivation for modelling interacting high-risk groups, we consider
the HIV/AIDS epidemic in southwest China and how its high-risk groups became overlapped in time.
The first HIV outbreak in China, recorded in 1989 in Yunnan Province, was confined to IDUs [5]. It has
been estimated that 44% of the sex workers in southern China had unprotected commercial sex with their
clients [6]. Peer disapproval of condom use and high intimate relationships with sex workers were determined
to be barriers to consistent condom use by clients of sex workers [7], along with the fact that some FSW are
often willing to engage in unprotected sex if their clients pay extra. Despite a significant decrease during
2000–2011, southwest China still bore the greatest HIV disease burden for FSW [8]. There is a high risk of
HIV transmission from FSW to long-term partners or possibly to newborns through mother-to-child vertical
transmission. Moreover, the male clients, once infected with HIV through buying sex, could in turn spread
HIV to their partners or wives as a bridge population, since they may transmit HIV from a high risk group
(FSW) to the general population [9].

Injecting drug use is another key factor in spreading HIV to the general population. A 2010 self-
administered, standard behavioural surveillance survey of 12,622 FSW recruited from Guangxi indicates
2.6% non-injecting drug users and 0.5% IDU [10]. In November 2002, a community-based survey targeting
HIV-seronegative IDUs was conducted in Xichang County of Sichuan Province, China. Over the following 36-
month follow-up period observation, the study showed that the average HIV incidence rate was 2.3% [11,12].
In a study in Guizhou Province in 2000, nearly 30% of all IDUs were women, and a considerable number of
them had engaged in commercial sex [13]. A 2004 study reported around 21% of female IDUs surveyed in
Yunnan Province reported selling sex for money or drugs in the previous month [14], while 60% of female
IDUs in Sichuan Province in 2003 reported selling sex for money or drugs and <30% of them reported
consistent condom use with customers [15]. Surveys in Yunnan Province in early 2000’s reported that HIV
prevalence among female IDUs was significantly higher than HIV prevalence among male IDUs [16,17].

A 2005 study, motivated by the HIV epidemic in Yunnan province, China in 1989 which has progressed
to a concentrated epidemic, compares the level of HIV risk behaviours of needle/apparatus sharing among
male IDUs and unsafe commercial sex between FSW and male clients [18] and examines the effects of risk
factors for HIV infection among these two groups. Prevalence rates as high as 74.5% were reported among
IDUs, those reported among FSW being as high as 10% [19]. Therefore, unlike in other parts of China,
there is evidence of significant interaction between the high-risk groups of FSW and IDUs, which provides
motivation for our study.

More recently, a model which classifies the at-risk population into IDUs (who do not engage in commercial
sex) and drug-free individuals who engage in commercial sex (sex workers and their clients) was proposed
in [20]. However, in this model, the equations for the infected subpopulations decouple near the disease-free
equilibrium which grossly simplifies the analysis and subsequently its biological significance. In this work,
we will formulate a model with two interacting high-risk groups of FSW and IDU with which to carry out
analysis.

2. The model

In this paper, we formulate an HIV transmission model with two interacting high-risk groups of FSW
and IDU under the following assumptions.

1. Two HIV transmission routes are considered: needle/apparatus sharing between male IDU and
commercial sex between FSW and sexually active male clients.
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Fig. 1. Model flow diagram: solid arrow denotes disease progression, broken arrow denotes disease transmission.

2. The total population is classified into three compartments according to the disease status in the body:
the susceptible individuals S; the infected individuals I before progression to AIDS; and the (removed)
AIDS patients R. We only incorporate compartments S and I into the model and ignore compartment
R since the AIDS patients do not have contacts (sexual or needle/apparatus sharing) with any other
population groups

3. The population is assumed to mix homogeneously.
4. Incidence is mass action.
5. All newly recruited individuals to the compartments of male drug-free clients (male DFC), FSW, male

IDU are respectively assumed susceptible.

These assumptions lead to the dynamic flow diagram for HIV transmission pictured in Fig. 1, the
definitions of the corresponding parameters being listed in Table 1.

We formulate the following system of ordinary differential equations for the SIR model, noting that we
do not give the equation for the removed class R since we assume AIDS patients do not play a role in disease
transmission.

dSM

dt
= AM − λF M IF SM − µSM

dIM

dt
= λF M IF SM − (µ + α)IM

dSF

dt
= AF − λMF IM SF − λDF IDSF − µSF

dIF

dt
= λMF IM SF + λDF IDSF − (µ + α)IF

dSD

dt
= AD − λF DIF SD − λDDIDSD − µSD

dID

dt
= λF DIF SD + λDDIDSD − (µ + α)ID.

(2.1)

3. The multigroup SIR model

In what follows, we shall attempt to analyse the global behaviour of a n-group version of (2.1)
with nonlinear forces of infection, of which (2.1) is a special case. Let us consider the multigroup SIR
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Table 1
Definition of various parameters.

Parameter Biological meaning

AM Constant recruitment into the group of susceptible male
DFC

AF Constant recruitment into the group of susceptible FSW
AD Constant recruitment into the group of susceptible male

IDU
λXY HIV transmission coefficient from IX to SY

µ Natural death rate
α Rate of AIDS development

model ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dSi

dt
= Ai − diSi −

n∑
j=1

βijSigij(Ij)

dIi

dt
=

n∑
j=1

βijSigij(Ij) − (µi + αi)Ii

, 1 ≤ i ≤ n. (3.1)

In what follows, we shall employ the following assumptions upon the functions gij , 1 ≤ i, j ≤ n.

(i) gij are locally Lipschitz continuous function on [0, ∞) satisfying gij(0) = 0.
(ii) 0 ≤ limIj→0+

gij(Ij)
Ij

= Cij < ∞.
(iii) gij(Ij) ≤ CijIj for all Ij ≥ 0.
(iv) The matrix (βijCij) 1≤i≤n

1≤j≤n
is irreducible.

In particular, note that we do not require all gij ’s to be nonidentically zero, and some of them may be
null (although not too many, due to the assumption (iv)). This feature is essential for our concrete model
(2.1), since we do not account for homosexual transmission, which leads to the corresponding gij ’s being
null. Also, from (ii), it is seen that Cij = g′

ij(0). Further, note that (ii) and (iii) are satisfied if gij(Ij) = CijIj

or gij(Ij) = CijIj

1+DijIj
, Cij , Dij ≥ 0, that is, by functions which either directly appear in the formulations of

our concrete model (2.1), or may be used to account for the effects of behavioural changes. The notion of
an irreducible matrix will be detailed in Section 3.2.

3.1. The basic reproduction number

The dynamics of (3.1) will be discussed on the feasible domain

Γ =
{

(S1, I1, . . . , Sn, In); Si, Ii ≥ 0, Si ≤ Ai

di
, Si + Ii ≤ Ai

d∗
i

}
,

where

d∗
i = min(di, µi + αi).

It is easy to see that the system (3.1) has a disease-free equilibrium E0,

E0 = (S0
1 , 0, S0

2 , . . . , S0
n, 0), S0

i = Ai

di
, 1 ≤ i ≤ n.

In order to use the next generation matrix approach formulated in van den Driessche and Watmough [21],
we define

M0 =
(

βijS0
i Cij

µj + αj

)
1≤i≤n
1≤j≤n

= FV −1, M̃0 =
(

βijS0
i Cij

µi + αi

)
1≤i≤n
1≤j≤n

= V −1F,
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where

F =
(
βijS0

i Cij

)
1≤i≤n
1≤j≤n

, V = diag(µi + αi)1≤i≤n.

Subsequently, we may define the basic reproduction number of the model (3.1) as R0 = ρ(M0), the spectral
radius of the matrix M0. However, since ρ(FV −1) = ρ(V −1F ), it also follows that R0

.= ρ(M̃0).

3.2. A summation lemma

We now introduce several matrix theory notions and notations, together with a summation lemma which
will prove useful when evaluating the derivative of a Lyapunov functional along the solutions of (3.1), in the
process of discussing the stability of the endemic equilibrium. Our approach is motivated by the argument
employed in Li and Shuai [22], Section 7.

Let U = (ukj), V = (vkj) be n × n matrices. We shall write U ≤ V if ukj ≤ vkj for all 1 ≤ j, k ≤ n and
U < V if U ≤ V and U ̸= V . If On ≤ U , we shall say that U is nonnegative.

Given a nonnegative n × n matrix A = (akj), the directed graph G(A) associated with A has vertices
1, 2, . . . , n, with a directed arc (k, j) starting from vertex k to vertex j if and only if akj ̸= 0. The directed
graph G(A) is then said to be strongly connected if any two distinct vertices can be joined by an oriented
path. Under these circumstances, the matrix A is irreducible if and only if the associated directed graph
G(A) is strongly connected. Equivalently, a n×n matrix A, n ≥ 2, not necessarily nonnegative, is irreducible
if for any proper subset M of {1, 2, . . . , n}, there are i ∈ M and j ∈ {1, 2, . . . , n} \ M such that aij ̸= 0.

For a nonnegative n × n matrix A = (akj), n ≥ 2, let

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
l ̸=1

a1l −a2l . . . −an1

−a12
∑
l ̸=1

a2l . . . −an2

...
...

...
−a1n −a2n . . .

∑
l ̸=n

anl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
be the Laplacian matrix of the directed graph G(A) associated with A and let Lkj be the cofactor of the
(k, j) entry of L. Let also ci = Lii. The following result then holds as a consequence of Kirchoff’s matrix
tree theorem (see Guo et al. [23], Appendix 1, for further details).

Lemma 3.1. Let ck, 1 ≤ k ≤ n be defined as above. Then
n∑

k=1

n∑
j=1

ckakjHk(xk) =
n∑

k=1

n∑
j=1

ckakjHj(xj),

where {Hk(xk)}n
k=1 is an arbitrary family of functions.

3.3. The stability of the disease-free equilibrium

Let us also define

S = (S1, S2, . . . , Sn)T , S0 = (S0
1 , S0

2 , . . . , S0
n)T , I = (I1, I2, . . . , In)T ,

0 = (0, 0, . . . , 0)T , M̃(S) =
(

βijSCij

µi + αi

)
1≤i≤n
1≤j≤n

.
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Theorem 3.1.
(a) If R0 ≤ 1, then the disease-free equilibrium E0 is the unique equilibrium of (3.1) and it is globally

asymptotically stable in Γ .
(b) If R0 > 1, then the disease-free equilibrium E0 is unstable.

Proof. (a) It follows from conditions (ii) and (iii) that On ≤ M̃(S) ≤ M̃0 on Γ . Also, if S ̸= S0, it follows
that On < M̃(S) < M̃0, and from Corollaries 2.1.5 and 2.1.10 of Berman and Plemmons [24] one finds that
ρ(M̃) < ρ(M̃0). Therefore, if R0 ≤ 1, then ρ(M̃(S)) < 1, which excludes the existence of any equilibrium
other than E0, the trivial one.

We shall now consider the stability of E0 in Γ . Since M̃0 is nonnegative and irreducible, it has a strictly
positive left eigenvector (ω1, ω2, . . . , ωn) corresponding to the eigenvalue ρ(M̃0), that is

(ω1, ω2, . . . , ωn)M̃0 = ρ(M̃0)(ω1, ω2, . . . , ωn).

We thereby construct the following Lyapunov functional

W1(t) =
n∑

i=1

ωi

µi + αi
Ii.

The derivative of W1 along the solutions of (3.1) is then given by

dW1(t)
dt

=
n∑

i=1

ωi

µi + αi

⎛⎝ n∑
j=1

βijSigij(Ij) − (µi + αi)Ii

⎞⎠
≤

n∑
i=1

ωi

⎛⎝ n∑
j=1

βijS0
i Cij

µi + αi
Ij

⎞⎠−
n∑

i=1
ωiIi

≤ (ω1, ω2, . . . , ωn)[M̃0I − I]
= (ρ(M̃0) − 1)(ω1, ω2, . . . , ωn)I
≤ 0.

If R0 < 1, then dW1(t)
dt = 0 if and only if I = 0. If R0 = 1, then necessarily

n∑
j=1

βijSiCij

µi + αi
Ij = Ii, 1 ≤ i ≤ n,

that is,

M̃(S)I = I.

As above, this implies that S = S0. Since {E0} is the largest invariant set in{
(S1, I1, . . . , Sn, In) ∈ Γ ; dW1(t)

dt
= 0
}

,

we obtain by applying the Lyapunov–LaSalle invariance principle that E0 is globally asymptotically stable.
(b) If R0 > 1 and I ̸= 0, we then have

(ω1, ω2, . . . , ωn)[M0I − I] = (ρ(M0) − 1)(ω1, ω2, . . . , ωn)I > 0.

By a continuity argument, one obtains that dW1(t)
dt > 0 in a vicinity of the disease-free equilibrium E0, which

implies that E0 is unstable. □
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3.4. The existence and stability of the endemic equilibrium

Let us now suppose that R0 > 1. Using Theorem 8.2.4 of Kuang [25] together with an argument similar
to the one employed in the proof of Proposition 3.3 of Li et al. [26], one may prove that the system (3.1) is
uniformly persistent.

As seen from Corollary 2.8.8 in Bhatia and Szegö [27] or Theorem D.3 in Smith and Waltman [28],
the uniform persistence of the system (3.1) and the uniform boundedness of its solutions in Γ ensure the
existence (but not the uniqueness) of a rest point, that is, of an endemic equilibrium E∗,

E∗ = (S∗
1 , I∗

1 , S∗
2 , I∗

2 , . . . , S∗
n, I∗

n).

Consequently, the following equilibrium relations involving E∗ are satisfied

Ai = diS
∗
i +

n∑
j=1

βijS∗
i gij(I∗

j ) (3.2)

n∑
j=1

βijS∗
i gij(I∗

j ) = (µi + αi)I∗
i , 1 ≤ i ≤ n. (3.3)

We may now focus on proving the global stability of E∗. In particular, this will also imply its uniqueness as
a byproduct.

Theorem 3.2. If R0 > 1 and

(
gij(Ij) − gij(I∗

j )
)(gij(Ij)

Ij
−

gij(I∗
j )

I∗
j

)
≤ 0, 1 ≤ i, j ≤ n, (3.4)

with equality if and only if Ij = I∗
j for any nonzero gij, then the endemic equilibrium E∗ is globally

asymptotically stable in the interior of Γ .

Proof. Let us construct a Lyapunov functional W2 by

W2(t) =
n∑

i=1
ciVi(t), (3.5)

with

Vi =
(

Si − S∗
i − S∗

i ln Si

S∗
i

)
+
(

Ii − I∗
i − I∗

i ln Ii

I∗
i

)
,

the choice of the coefficients ci, 1 ≤ i ≤ n being deferred until later in the proof. In other words, the
Lyapunov functional W2 is a linear combination of Lyapunov functionals Vi involving only the ith group,
the linking between groups being made, as we shall seen later, by the coefficients ci, 1 ≤ i ≤ n.

Using the first equilibrium relation (3.2), we observe that

dVi(t)
dt

=
(

1 − S∗
i

Si

)⎡⎣Ai − diSi −
n∑

j=1
βijSigij(Ij)

⎤⎦
+
(

1 − I∗
i

Ii

)⎡⎣ n∑
j=1

βijSigij(Ij) − (µi + αi)Ii

⎤⎦
=
(

1 − S∗
i

Si

)⎡⎣diS
∗
i +

n∑
j=1

βijS∗
i gij(I∗

j ) − diSi −
n∑

j=1
βijSigij(Ij)

⎤⎦
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+
(

1 − I∗
i

Ii

)⎡⎣ n∑
j=1

βijSigij(Ij) − (µi + αi)Ii

⎤⎦
=
(

1 − S∗
i

Si

)
di(S∗

i − Si) +
n∑

j=1
βijS∗

i gij(I∗
j )
(

1 − S∗
i

Si

)
+

n∑
j=1

βijS∗
i gij(Ij)

−
n∑

j=1
βijSigij(Ij)I∗

i

Ii
− (µi + αi)Ii + (µi + αi)I∗

i .

By employing the second equilibrium relation (3.3), we deduce that

dVi(t)
dt

=
(

1 − S∗
i

Si

)
di(S∗

i − Si)

+
n,∗∑
j=1

βijS∗
i gij(I∗

j )
(

2 − S∗
i

Si
+ gij(Ij)

gij(I∗
j ) − Si

S∗
i

gij(Ij)
gij(I∗

j )
I∗

i

Ii
− Ii

I∗
i

)
,

where the starred sum is taken only for those j between 1 and n for which gij is not null. Let us define

F : (0, ∞) → (−∞, ∞), F (x) = 1 − x + ln x.

and observe that

F (x) ≤ 0, for all x ∈ (0, ∞), (3.6)

with equality if and only if x = 1. It is seen that

2 − S∗
i

Si
+ gij(Ij)

gij(I∗
j ) − Si

S∗
i

gij(Ij)
gij(I∗

j )
I∗

i

Ii
− Ii

I∗
i

=
(

− Ii

I∗
i

+ ln Ii

I∗
i

+ Ij

I∗
j

− ln Ij

I∗
j

)
+
(

1 − S∗
i

Si
+ ln S∗

i

Si

)

+
(

1 − Si

S∗
i

gij(Ij)
gij(I∗

j )
I∗

i

Ii
+ ln Si

S∗
i

gij(Ij)
gij(I∗

j )
I∗

i

Ii

)
+
(

1 − Ij

I∗
j

gij(I∗
j )

gij(Ij) + ln Ij

I∗
j

gij(I∗
j )

gij(Ij)

)

− 1 − Ij

I∗
j

+ Ij

I∗
j

gij(I∗
j )

gij(Ij) + gij(Ij)
gij(I∗

j )

=
[

F

(
Ii

I∗
i

)
− F

(
Ij

I∗
j

)]
+ F

(
S∗

i

Si

)
+ F

(
Si

S∗
i

gij(Ij)
gij(I∗

j )
I∗

i

Ii

)
+ F

(
Ij

I∗
j

gij(I∗
j )

gij(Ij)

)

+ Ij

gij(Ij)gij(I∗
j )
(
gij(Ij) − gij(I∗

j )
)(gij(Ij)

Ij
−

gij(I∗
j )

I∗
j

)
.

Due to (3.4) and (3.6), one sees that

dVi

dt
≤
(

1 − S∗
i

Si

)
di(S∗

i − Si) +
n,∗∑
j=1

βijS∗
i gij(I∗

j )
[

F

(
Ii

I∗
i

)
− F

(
Ij

I∗
j

)]

and consequently, accounting for the null gij ’s as well,

dVi

dt
≤

n∑
j=1

βijS∗
i gij(I∗

j )
[

F

(
Ii

I∗
i

)
− F

(
Ij

I∗
j

)]
.
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It follows that

dW2(t)
dt

≤
n∑

i=1
ci

⎧⎨⎩
n∑

j=1
βijS∗

i gij(I∗
j )
[

F

(
Ii

I∗
i

)
− F

(
Ij

I∗
j

)]⎫⎬⎭ .

Let us now denote

A =
(
βijS∗

i gij(I∗
j )
)

1≤i≤n
1≤j≤n

and let ci = Lii, the cofactor of the (i, i)-entry of the Laplacian matrix of the directed graph G(A) associated
with A, as described in Section 3.2. Then

n∑
i=1

n∑
j=1

ciaijF

(
Ii

I∗
i

)
=

n∑
i=1

n∑
j=1

ciaijF

(
Ij

I∗
j

)
, (3.7)

by Lemma 3.1. Consequently, dW2(t)
dt ≤ 0 for all t ≥ 0. If dW2(t)

dt = 0, then necessarily Si = S∗
i for all

1 ≤ i ≤ n. Also, for a given i, if gij is nonzero, then Ij = I∗
j , and it follows from assumption (iv) that

Ij = I∗
j for all 1 ≤ j ≤ n and the equality dW2(t)

dt = 0 holds only at the endemic equilibrium E∗. By
Lyapunov–LaSalle principle, E∗ is globally asymptotically stable in the interior of Γ , fact which ensures its
uniqueness as an endemic equilibrium and completes the proof. □

Remark 3.1. The fact that condition (3.4) is expressed in terms of the components of the endemic
equilibrium E∗, which are not explicitly known, makes it difficult to verify via a post hoc analysis. This
condition is, however, a priori satisfied for a large class of functions which are suitable to represent forces of
infection, which includes strictly increasing functions which are concave down.

4. Applications

We now use the previously established abstract framework to discuss the global dynamics of model (2.1).
Under our settings, n = 3, since our model considers of three groups. For notational convenience, let us
associate the subscript 1 to the male DFC group, the subscript 2 to the FSW group and the subscript 3
to the male IDU group. Furthermore, assume that the natural death rates and rates of AIDS development,
respectively, are as follows.

d1 = d2 = d3 = µ, α1 = α2 = α3 = α.

The corresponding functions and parameters defining the process of disease transmission take the following
forms

g11(I1) = 0, g12(I2) = I2, g13(I3) = 0,
g21(I1) = I1, g22(I2) = 0, g23(I3) = I3,
g31(I1) = 0, g32(I2) = I2, g33(I3) = I3

β11 = 0, β12 = λF M , β13 = 0,
β21 = λMF , β22 = 0, β23 = λDF ,

β31 = 0, β32 = λF D, β33 = λDD.

Note that conditions (i), (ii) and (iii) are verified for these choices of gij , condition (3.4) being also verified
the nonzero gij , with

C11 = 0, C12 = 1, C13 = 0,
C21 = 1, C22 = 0, C23 = 1,
C33 = 0, C32 = 1, C33 = 1,
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which implies that the matrix (βijCij) has the following expression

(βijCij) =

⎛⎝ 0 λF M 0
λMF 0 λDF

0 λF D λDD

⎞⎠ ,

being consequently irreducible. It then follows that condition (iv) is verified as well. One sees that

M0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 λF M AM

µ(µ + α) 0
λMF AF

µ(µ + α) 0 λDF AF

µ(µ + α)

0 λF DAD

µ(µ + α)
λDDAD

µ(µ + α)

⎞⎟⎟⎟⎟⎟⎟⎠ , R0 = ρ(M0).

The global dynamics of model (2.1) can be summarised in the following result.

Theorem 4.1.

(a) If R0 ≤ 1, then the disease-free equilibrium E0 of (2.1) is the unique equilibrium and it is globally
asymptotically stable in Γ .

(b) If R0 > 1, then the disease-free equilibrium E0 of (2.1) is unstable. There is a unique endemic
equilibrium E∗ of (2.1) and this equilibrium is globally asymptotically stable in the interior of Γ .

Let us now find further more explicit sufficient conditions for the stability of equilibria. To this purpose,
let us observe that the characteristic equation of M0 is given by

λ3 + a2λ2 + a1λ + a0 = 0, (4.1)

where

a2 = − λDDAD

µ(µ + α)

a1 = −λF M λMF AM AF + λF DλDF ADAF

µ2(µ + α)2

a0 = λF M λMF λDDAM AF AD

µ3(µ + α)3 .

(4.2)

Define

Q := 3a1 − a2
2

9 , R := 9a1a2 − 27a0 − 2a3
2

54

and let D = Q3 +R2 be discriminant of the cubic equation (4.1). Since the sign of D depends on the concrete
values of a0, a1, a2, so does the nature of the roots of (4.1).

Since a0 > 0, one of the three roots is a negative real number. If D < 0, the remaining two roots are
complex and conjugate, while if D ≥ 0, then all three roots are real. It seems complicated, though, to find
the one which has maximal modulus and give an explicit expression of R0. To ensure that all of them have
modulus < 1, we shall employ Jury conditions, which in this case read as

a0 < 1
1 + a2 + a1 + a0 > 0
1 − a2 + a1 − a0 > 0

1 − a2
0 > |a0a2 − a1|.

(4.3)
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We now analyse separately several subsystems of (2.1). The (M -F ) subsystem reads as

dSM

dt
= AM − λF M IF SM − µSM

dIM

dt
= λF M IF SM − (µ + α)IM

dSF

dt
= AF − λMF IM SF − µSF

dIF

dt
= λMF IM SF − (µ + α)IF

(4.4)

and has basic reproduction number

RMF =
√

λF M λMF AM AF

µ(µ + α) .

Similarly, the (F -D) subsystem reads as

dSF

dt
= AF − λDF IDSF − µSF

dIF

dt
= λDF IDSF − (µ + α)IF

dSD

dt
= AD − λF DIF SD − λDDIDSD − µSD

dID

dt
= λF DIF SD + λDDIDSD − (µ + α)ID

(4.5)

and has basic reproduction number

RF D =
λDDAD +

√
(λDDAD)2 + 4λF DλDF ADAF

2µ(µ + α) .

The (M -D) subsystem decouples, reading as

dSM

dt
= AM − µSM

dIM

dt
= −(µ + α)IM

dSD

dt
= AD − λDDIDSD − µSD

dID

dt
= λDDIDSD − (µ + α)ID,

(4.6)

and having the basic reproduction number

RD = λDDAD

µ(µ + α) .

Let us denote

P = λF DλDF ADAF

µ2(µ + α)2

and observe that, in fact,

RF D =
RD +

√
R2

D + 4P

2 , RD ≤ RF D. (4.7)

Using the “partial” reproduction numbers RF D, RD, and RMF , one may then formulate the following
stability result.
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Theorem 4.2.

(a) If RMF < 1, RD < 1 and

(1 − RD)(1 − R2
MF ) > P, (4.8)

then the disease-free equilibrium E0 of (2.1) is globally asymptotically stable in the interior of Γ .
(b) If RMF > 1 and RD > 1, then the unique endemic equilibrium E∗ of (2.1) is globally asymptotically

stable in the interior of Γ .

Proof. (a) We shall verify Jury’s conditions. It is seen that

a0 = R2
MF RD < 1.

Also,

1 + a2 + a1 + a0 = 1 − RD − R2
MF − P + R2

MF RD

= (1 − RD)(1 − R2
MF ) − P > 0,

1 − a2 + a1 − a0 = 1 − RD + R2
MF − P − R2

MF RD

= (1 + RD)(1 − R2
MF ) − P > 0.

Further

|a0a2 − a1| = |P + R2
MF (1 − R2

D)|
= P + R2

MF (1 − R2
D)

and

1 − a2
0 = 1 − R4

MF R2
D.

It now remains to prove that

1 − R4
MF R2

D > P + R2
MF (1 − R2

D).

However, this is equivalent to

P < (1 + R2
MF R2

D)(1 − R2
MF ),

which follows from (4.8).
(b) Let λ1, λ2, λ3 be the characteristic roots of M0. Since

|λ1λ2λ3| = |−R2
MF RD| > 1,

it follows that R0 = ρ(M0) > 1. □

Remark 4.1. Note also that, by (4.7), RF D < 1 ⇔
√

R2
D + 4P < 2 − RD. If RD < 1, one further has

RF D < 1 ⇔ P < 1 − RD. It follows that, in the conditions given in the first part of the theorem (RMF < 1,
RD < 1), condition (4.8) is strictly stronger than RF D < 1.
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Remark 4.2. Our model (2.1) describes, in fact, a particular scenario of the general system (3.1) with
n = 3 by considering groups of male DFC, FSW, male IDU and illustrating the applicability of Theorem 3.2.
In doing so, it perhaps relies on an oversimplification of the routes of HIV transmission. In particular, the
model (2.1) assumes that males in the “bridge” group can only be infected through commercial sex and
needle/apparatus sharing. It is natural for (2.1) to incorporate other risk groups, such as men who have sex
with men (MSM) and bisexual men, and address their roles in HIV transmission.

This would subsequently lead to a higher dimensional model, associated with another scenario of the
general system (3.1) with n ≥ 4, for which a result parallel to Theorem 4.1 could still be formulated,
provided that assumptions (i)-(iv) and condition (3.4) are still met. However, the analysis of the model (2.1)
via its subsystems, as done in Theorem 4.2, relies on the lower dimensionality and on the particular form of
the matrix M0 and would not hold in a simple form for higher dimensional models unless a high degree of
“separation” between the subsystems of (2.1) is assumed.

5. Discussion

In this paper, we propose and investigate the three-group HIV propagation model (2.1) with two
interacting high-risk groups: FSW and male IDU, along with a non-high-risk group, male DFC of FSW. The
existence and global stability of equilibria are studied in the more comprehensive framework of a general
n-group model (3.1) with separable incidences, of which our HIV propagation model (2.1) is a special
case.

By using Lyapunov functionals, constructed using the graph theoretic approach of Li and Shuai [22], we
determine that the basic reproduction number R0 is a threshold parameter for the dynamics of (3.1), in the
sense that if R0 < 1, then the disease-free equilibrium E0 is globally asymptotically stable; while if R0 > 1,
then the global stability properties are transferred to the unique endemic equilibrium E∗ (Theorem 4.1).
More explicit sufficient conditions for the global stability of equilibria of the model (2.1) are derived in terms
of the partial reproduction numbers RMF , RF D, and RD, where RMF is the basic reproduction number
due to infection between FSW and their male drug-free clients, RF D is the basic reproduction number due
to infection between FSW and IDU, and RD is the basic reproduction number due to infection among male
IDU (Theorem 4.2).

Based on Theorem 4.2 and Remark 4.1, we know that having all 3 partial reproduction numbers being
less than 1 does not guarantee stability of DFE. Furthermore, we note that Condition in Theorem 4.2(a) is
sharp. That is, for DFE to be globally stable, RF D, the reproduction number for interaction between FSW
and IDU, must be more than just less than unity. This result highlights the relative importance of targeting
intervention to significantly reduce disease transmission between the 2 high risk groups, especially if the goal
of intervention is the eventual eradication of epidemic.

However, Condition in Theorem 4.2(b) is not sharp. That is, it is conceivably for the endemic equilibrium
E∗ to be globally stable even if one or more of the partial reproduction numbers are less than unity. In other
words, significant outbreak in one high risk group alone could be sufficient to drive up the epidemic in the
region. This result again highlights the importance of targeting intervention to reduce disease transmission
of all groups, even if the aim of the intervention is merely to mitigate the epidemic.

In conclusion, if the goal of intervention policy is to eradicate the disease, significantly reduction in
transmission between the two high-risk groups, FSW and IDU, is needed, in addition to reduction in all
other routes of transmission. On the other hand, if the aim of the intervention policy is merely to mitigate
the disease, reduction in any route of disease transmission will be useful, albeit reduction in transmissions
between the two high-risk groups will be more impactful and hence more cost-effective than others. Similar
result on targeting the highest risk groups for most cost-effective intervention was also found in Hsieh and
Wang [3].
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The current model can be extended in many aspects. Similarly to the direct and indirect classification
of FSW in Thailand in the 1990’s [2–4], recent studies on FSW in China have focused on classification
of different tiers of venues (e.g., [29]). High-tier venues include hotels, night clubs, star-ranked hotels with
spas/saunas, karaoke clubs, dance halls, and pubs; by middle-tier venues are massage parlours, beauty
salons, spas/saunas, leisure centres, and tea houses; while examples of low-tier venues are small hairdressing
salons, street walkers, restaurants, temporary sublets, foot massage, unranked hostels, small hotels and
small pubs. It has been established that high and middle-tier FSW have a significantly lower risk of HIV
infection than lower-tier FSW [29]. Therefore, it could be meaningful to assign different contact or disease
transmission rates for FSW depending on their venues of work. One may also consider steady partners of
FSW as a separate bridge group, and the male customers into two groups by their levels of frequency to use
commercial sex, on the lines of [4], since the n-group model (3.1) makes it possible to add further population
groups to our three-group model (2.1), as long as separable incidences are employed.

Different incidence terms may also be employed for the different transmission modes of the model, which
would represent another meaningful extension of the current results, in view of the approach of Li and
Shuai [22] towards the construction of Lyapunov functionals employed here covers only the situation in
which all incidences used in the model are separable incidences. One could opt for frequency-dependent
incidence due to the higher level of prevalence often observed among high-risk groups, such as FSW and
IDU, when compared with the general population. It follows that one would expect sexual transmission
through commercial sex and needle/apparatus sharing to be more likely dependent on how frequently the
contact are made with susceptible persons, rather than how many susceptible persons there are. However,
the use of standard incidence terms to characterise some of the transmission modes in our model would
render the framework constructed in Section 3 inapplicable, and provides new challenge for future work.
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