
Chapter 3
LINEAR MAPPINGS ON VECTOR SPACES

 § 3.1 LINEAR AND BILINEAR FORMS / FUNCTIONALS 
Given a vector space V, several types of functions (or mappings) can be

defined on it. They can be classified according to several criteria, but the most
important regards the nature of the values they take. In other words, several
kinds of mappings can be defined on a vector space  V (over a field F ) that may
differ in what regards their ranges. Such a range may consist of vectors or of
scalars in the field F. Some important mappings taking scalar values are
presented in this chapter. The first of them are introduced below.  

Linear Forms 
Definition 1.1. Let V  be a vector space over the field F (= ú / = ÷). A
mapping  is said to be a linear functional (or linear form) if it
satisfies both of the following properties (or axioms): 



Property is called the additivity of  f , while may be termed the
homogeneity of   f  with respect to the multiplication by scalars. Certainly, the
two operations should be differently understood in the two sides of each
equation in the above definition : in the sum in the l.h.s. is the vector
addition in  V, while  +  in the r.h.s. denotes the sum of scalars in  F ; in 
the scalar multiplies a vector in the l.h.s. (under  f  ) while it multiplies the
scalar  in its r.h.s. 

Remark 1.1. Properties and in  Def. 1.1 can be replaced by a
single property, namely  

(LIN) 

Indeed, & |  (LIN)  since 

 (in  Def. 1.1 )  | 

                          

Conversely,  (LIN)  |  for (also using axiom of a
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vector space  see  § 1.1 - Def. 1.1 ) while   (LIN)  |  for  
and   Therefore, Definition 1.1 may be replaced by an equivalent but
simpler one : 

Definition 1.1'. Let  V  be a vector space over the field F ( = ú / = ÷).  A
mapping  is said to be a linear functional (or linear form) if it
satisfies  

(LIN) 



Property (LIN) is called the linearity of mapping  f , and it just gives the
terminology of ‘linear forms’. This property can be extended to linear
combinations of several vectors under  f , as stated in  

PROPOSITION 1.1.  If   f   is a linear form on the vector space  V  then 

  (1.1)

Proof (by induction on  m ).  For  is just property (LIN).  Let us
assume that property (1.1) holds and denote it by  Then   is
implied by  and  as follows :  

   

      

     

Hence, property   }|  Eq. (1.1)  holds for any 

This property (1.1) may be called the extended linearity.   It can be written
in a simpler way if we use the so-called ‘matrix notations’ introduced in  § 2.1 -
Eqs. (1.12) & (1.13) for linear combinations of several vectors with several
scalars.  Let us recall those notations : 

X    (1.2)
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With  (1.2), a linear combination may be written as 

X T  =  X  (1.3)

It follows from  (1.1)  with  (1.3)  that 

 X T ) X  T ) . (1.4)

In (1.4), X T )  represents the column vector of the values 

 (1.5)
Using the alternative way to write a linear combination with the matrix notation
(that is, the third side in the triple equality (1.3)), the property of extended
linearity can be written as 

f (X X ) (1.6)
In this formula (1.6), the linear form’s values of (1.5) appear as the component
of a row vector :  

X (1.7)

In what follows, we will prefer the notational alternative  (1.6). 
This property (1.4) or (1.6) is involved in defining the coefficients of a linear

form (LF) and its analytic expression in a certain basis  A  of the space. 

Definition 1.2. Let  V  be a vector space over the field  F , spanned by the basis 
 The coefficients of the linear form are the

components of the (row) vector  

(1.8)

Hence,   and these values are written on a row. 

PROPOSITION 1.2. If the vector space V is spanned by the basis
 and the coefficients of the linear form  in this

basis are  then the image of a
vector is   

                                 (1.9)

Proof. Formula (1.9) immediately follows from Definition 1.2 of the coefficients
of in a basis A and from property of extended linearity, under its form (2.6),
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with  X  ! A  and ! 

Remarks 1.2.  The analytic expression of under its “matrix form” (1.9)
is nothing else than the extended linearity of an LF applied to the linear
expression of a vector in a basis  A  : 

 (1.10)

Let us also see that the matrix notations like the ones in (1.2) – (1.4) allow for
very quick and simple proofs. 

Example 1.1. If V is a vector space of dimension 4 over the field ú,
 is a basis spanning  V and is a linear form

with its coefficients in  A   then the image through 
 f  of (or the value taken by  f  on ) the vector   is 

what results either by property (1.1) in the previous PROPOSITION
applied to  with the given coefficients, or by formula
(1.9) : 

 

~

Remarks 1.3. The explicit expression (1.10) of  in terms of the
coordinates of a vector in a basis gives the reason for calling such a scalar
mapping to be a linear form : it is just a linear function (or a homogeneous
polynomial of order 1) in the coordinates  of  x  in basis  A  of  V. 
In the particular (but very often met) case when  or with the
standard basis  E   in each of these spaces, the analytic expression of  for

becomes 

 with  (1.11)

We recall that  E  was the notation used for the standard basis in or in
which the coordinates of a vector coincide with their components that appear
under the sum in  (1.11), i.e. 
 A special subset of  V  can be associated with any linear form defined on  V:

Definition 1.3. If is a linear form, then its  kernel  is defined by 

                 (1.12)
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In other words, the kernel is the subset of all vectors mapped by   f   on the zero
scalar of the field (or on the real number  0  when Using the
subscript on  f  to denote the counter-image of a scalar in the range of
function  f , we can define the kernel of the LF as   

                     (1.13)

The kernel of any linear form is more that a simple subset of V, as stated in 

PROPOSITION 1.3. If  is a linear form, then its kernel is a
subspace of  V : 

                                      (1.14)

Proof.  Let   and let   be two arbitrary scalars. Then 

(1.15)

The last membership in (1.15) + Definition 1.1' in the earlier section,  § 2.2,
imply the inclusion of  (1.14).  

Remarks 1.4. The condition on a vector L to be in
is equivalent, in view of  (1.9)  &  (1.10), to the equation 

(1.16)

Except the trivial case when in any
basis A, it follows from (1.16) that the coordinates of a vector in the kernel
should satisfy a linear equation with its coefficients = the components of

Another property is involved by this PROPOSITION 1.3, and by
Remark 2.2  in  § 2.2 (Eq. (3.7) at page 59): since any subspace contains the zero
vector  0, the kernel of any linear form also does it. If we denote as 

 the set of the LF’s defined on space  V, then we may formally
write this property as 

                     (1.17)

Example 1.2. For the linear forms defined on a vector space like or
equation (1.16) involves the components of the vector  X  –  candidate to

the membership in
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For instance, if  and  

 

By the way, many applications with linear forms (and other notions in the
LINEAR ALGEBRA) are formulated on the most usual vector space, that is 

 In the case of LF’s, instead of giving them by the coefficients in the
standard basis  E  it is simpler to give their analytic expression in terms of the
components of the argument vector as we did it above.  To conclude
this example, let us see that the general form of a vector in after
denoting  is 

L with 

Indeed, the image of this thru   f   is  

~

As it follows from PROPOSITION 1.2, the coefficients and - implicitly - the
analytic expression of a linear form depends on the considered basis. When the
(initial) basis A  is changed to another basis B, the coefficients naturally change,
too. The formula giving the “new” coefficients is given in  

PROPOSITION 1.4.  If  is a linear form with its coefficients
 in basis  A  and if basis  A  is changed to basis 

B  by the transformation 

  (1.18)
 then the coefficients of in basis B  are given by  

         (1.19)

Proof.  Expression (1.19) of the coefficients in the new basis  B   follows
from (1.18)  but not quite straightforward. Let us firstly remark that the
property of extended linearity of a linear form in the “matrix notation” (1.6) may
be written for several columns of scalars simultaneously. In other words, a linear
form f with well (and uniquely) defined coefficients  in
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basis A  satisfies property (1.1)  }|  (1.6)  for any set of  m  or  n scalars, and
if several such ordered  n-tuples of scalars are considered, they may be arranged
as column vectors forming a matrix that multiplies  X (at right) under  f  in the
l.h.s. of  (1.6), and X ) in the r.h.s.  of that equation. If we consider the n-by-k
matrix  and  f   is a linear form with its coefficients in
basis A as in the statement and also rewritten above, ,
then ! if  X  is replaced by A and Eq. (1.6) is (k  times) simultaneously written
for the columns of  U ! we get 

(1.20)

If we now take instead of  U  in  (1.20)  we obtain  

(1.21)

Hence formula  (1.19)  in the statement is thus proved.  

As a technical matter, the C-dot ( @ ) in equations (1.20) and (1.21) may be
omitted. It stands for the matrix product, but it was not used in the statement -
Eqs. (1.18) & (1.19). 
Example 1.3. Let  f   be a linear form whose coefficients in a basis A (of the 4-
dimensional vector space  V  ) are  If
basis  A  is changed to  B  with the transformation matrix  

(1.22)

then the new coefficients in basis  B  will be, according to formula  (1.19)  and
the numerical data just written, 

(1.23)

~

Remark 1.5.  Formula (1.19) expresses the dependence of the coefficients of a
linear form on the basis selected in  V. However, the value of an LF essentially
depends on its argument  x (and also on its coefficients). Therefore, the value of
a certain LF on a given argument remains the same irrespectively of the basis
considered. Let us illustrate this remark using the previous example.  If we take 
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(1.24)

formula  (1.9) - (1.10)  for the value of an LF gives  

(1.25)

The same value of (1.24) would have to be retrieved if we use the “new” basis
B  instead of  A. The coefficients of   f   in  B  have been just found - Eq. (1.23). 
We still need the coordinates of the vector   x  in this basis. They can be found
using the method presented in  § 1.1 - Eq. (1.54) : the new coordinates 

can be most conveniently determined by the Gaussian
elimination, that is by transformations on the rows of the (augmented) matrix 

    

   

   

  (1.27)

   (1.27)  |    (1.28)
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   (1.23)  &  (1.28)  | 

                                   

Hence, the value in (1.25) has been retrieved, working with basis  B  as well. 
~

This problem of changing bases and coefficients of an LF implies, in
particular, a simple way for finding the coefficients of a linear form in a given
basis of a space like  or  

If the LF is given by its coefficients in the standard basis  E  of such a space,
what is equivalent to its analytic expression in terms of the components of 

like in Example 1.2, the coefficients of  f  in basis 
 can be found in two ways that lead to the same result. The

transformation from the standard basis  E  to another (given) basis  B  involves
a transformation matrix see Eqs. (1.84) at page 23 in  § 1.1.  Then, for
each its components are its coordinates in the standard basis 
E  and it follows that 

(1.29)

But the same result follows from the coefficient transformation formula (1.19) 
with  as it has just been recalled, from  § 1.1. 

*    *    *    *    *    * 
The Dual Space

An interesting problem concerns the set of all linear forms defined on the same
vector space  V.  We earlier considered it, in connection with the notion of
kernel, and denoted it as Two operations with / on the linear
forms in this set can be naturally defined: the sum of two LF’s and the
multiplication by a scalar of an LF. 

Definition 1.4. If   and  then  

 (1.30)

    (1.31)

By the way, let us recall that we had earlier met this definition on the set of
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all real functions  F  with  (see Example 1.5 in  § 1.1).  The structure
induced by these two (linear) operations on the set of real functions defined on
an interval was that of a vector space, and the same property obviously holds
for 

THEOREM 1.1. The set with the two operations defined in
 & of  Def. 1.4  is a vector space over the field 

Proof.  It suffices to show that & |  

 |
This implication follows from property (LIN) in  Definition 1.1' : 

   

   

  

(1.32)

This equation  (1.32)  ! the leftmost side = the rightmost side) shows that 

     

and the proof is thus over. 

The vector space   is called the dual space (of the vector space 
V ) and it is denoted, in many textbooks of LINEAR ALGEBRA, Many
notions defined in general vector spaces (see § 1.1 ) can be also defined in 

for instance, the linear independence / dependence among the linear
forms, bases in subspaces of  etc.  The “zero vector” in is the constant
zero form and it is defined by Its coefficients in any
basis  A  of   V   will be It is also easy to see that the kernel
of this trivial LF is the whole space :  The negative of an LF  f  is just 
 f   times If then  

If a finite family of linear forms on  V  is given, its linear independence /
dependence can be effectively studied if the (row vectors of their) coefficieents
in a basis  A  are known. Their independence / dependence is equivalent to the
corresponding relationship among their coefficient vectors  of   This



 3.1  LINEAR & BILINEAR FORMS      59

problem is illustrated by  

Example 1.4. Let us consider three linear forms whose coefficients in a basis 
A  of   V (whose dimension is  = 4) are the entries in the rows matrix M given
below :  

(1.33)  

It is required to establish whether these linear forms are independent or not. 

It can be seen that (for instance) and   are linearly independent, but
not all the three forms since Writing down the equation involved
in the definition of linear dependence / independence leads to a homogeneous
system of matrix  which admits the nontrivial solution  
Hence   ~

If  L F  is a finite family of  m  linear forms defined on  V   with 
it is clear that at most  n  LF’s in this family can be linearly independent. The
number of the independent forms equals the rank of the matrix whose rows
consist of their coefficients (in any basis of the space). 

Let us close this section with a connection to the linear systems, studied in 
§ 1.2 .  It is obvious that the left hand side of each equation of a linear system
(see Eq. (2.28) at page 43) is a linear form in the components of the unknown
vector  X ; its coefficients are just the entries of the corresponding row of matrix
A , in the matrix equation  that is equivalent to the system (2.28).  If the
system is homogeneous, that is its equivalent matrix equation is     

M  each equation is of the form 

(1.34)

The solution of and equation of the form (1.34) is the kernel of the LF whose
coefficients (usually in the standard basis  E ) are just the entries of the i-th row
of matrix  A.  If we denote by   the left-hand side of Eq. (1.34), it follows
from Eq. (2.30') in  § 1.2 - page 44) that the solution set  S (in fact subspace) of
such a homogeneous system is the common kernel of the  m  linear forms : 

(1.35)
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Bilinear Forms 

The bilinear forms are (also, like the LFs) scalar mappings of two vector
variables. More precisely, a bilinear form (BLF) is a function defined on two
(possibly different) vector spaces over the same field F (or  K , as it is denoted
in some textbooks of LINEAR ALGEBRA, e.g. [E. Sernesi, 1993] ) and taking values
in F / K . In fact, a BLF is defined on the Cartesian product of two vector spaces
or of the same space by itself. The formal definition of a BLF is 

Definition 1.5. Let U & V  be two vector spaces over the field  K (= ú / = ÷). 
A  mapping is said to be a bilinear functional (or bilinear
form) if it satisfies both of the following properties (or axioms) :  

 (1.36)

(1.37)



Remark 1.6. Property represents (for a fixed the linearity of 
f  in its first argument,  while postulates the  linearity  in the second
argument of  f  (for a fixed  Hence, many of the properties of linear
forms, earlier presented, hold for bilinear forms, too. Thus, the property (LIN)
can be extended – for each of the arguments – to linear combinations of several
vectors, as stated in 
PROPOSITION 1.5.  If  is a bilinear form, then 

   (1.38)

   (1.39)

Proof. The proofs of & can be effectively performed by induction
on  (respectively), but they may be omitted since these properties follow
from  PROPOSITION 1.1 in   § 2.1  and from  Remark 2.1. 



The two properties (1.38) & (1.39) of extended linearity can be written in
a matrix form, using appropriate notations - similar to those of  (1.3) in the
previous subsection (on LFs). 

X    (1.40)

Y    (1.41)

With these notations in  (1.40)  and (1.41), the linear combinations that occur
in &  of the previous PROPOSITION may be (respectively) written as 

X  T  =  X  (1.42)

Y T  =  Y  (1.43)

It follows from  (1.38)  with  (1.42)  that 

X T , y) X T , y) . (1.44)

Property or  (1.39)  with notation  (1.41)  becomes 

Y Y  (1.45)

Although the use of the “matrix notations” (that is rows or columns whose
entries are vectors) is nothing new, let us write - explicitly - what mean two
notations that occur in  (1.44)  and  (1.45). 

X  T , y )   (1.46)

 Y (1.47)

Let us also mention that the symbol that occurs in (1.41), (1.43), (1.45) is
not the Latin letter capital  m  but the Greek capital  μ.  

The properties of extended linearity in each argument of a BLF can be
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combined, leading to the extended linearity in  both arguments.  The formula of
(combined) extended linearity, in both arguments, can be obtained from Eq.
(2.3) by replacing y with the linear combination of the n vectors

 that occurs in  (1.39). Alternatively, the same formula can be
obtained from Eq. (1.39) by replacing the vector  x  by the linear combination
of the  m  vectors that occurs in (1.38), that is The  explicit
form of the property of simultaneous linearity (in both arguments) thus
obtained (omitting the universal quantifiers + memberships) is 

                 (1.48)

This formula (1.48) takes a much simpler (and easier to remember) expression
in terms of the matrix notations of  (1.40) , . . . ,  (1.47) :  

                     (1.49)X T,Y X T,Y

The mid factor that occurs in (1.49) is an  m-by-n  matrix whose entries are the
values of the BLF on each possible couple of vectors from the two spaces,
respectively. 

 X T,Y  

(1.50)

A matrix of the form (1.50) is involved in defining the coefficients of a BLF
in a pair of bases. 

Definition 1.6. If is a bilinear form and is spanned by 
 while is spanned by  then the

coefficients of   f  in the pair of bases are the entries of the matrix    

         (1.51)
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Clearly, the m-by-n matrix that occurs in  (1.51)  is obtained from  (1.50)
for  X ! A  and  Y  !  

PROPOSITION 1.6. (The analytical expression of a BLF in a pair of bases). 

 If  is a bilinear form with the matrix in
the pair of bases then the value taken by   f   on the pair of vectors

 with 

(1.52)

then  

                     (1.53)

Proof.  Expression (1.53) immediately follows from property (1.49) with 

 X T Y  and   of  (1.51) . 

Expressions (1.52) of  x  and   y  replace the two arguments of  f  in the Eq.
(1.52).   

Let us remark the simplicity of a proof like this, when the “matrix
formulations” are used. The expression (1.53)  should be read as follows : 

If the coefficient matrix of a bilinear form in the pair of
bases is known, the  value equals the scalar
obtained by multiplying  at left by the row of
the coordinates of  x and, at right, by the column of the
coordinates of y (in the specific bases of the spaces

  

This analytical expression also offers a practical and easy-to-apply rule for
calculating as illustrated by 

Example 1.4.  Let   be a bilinear form with its matrix 

in the pair of bases   of  U  and  V,
respectively. It is required to find  

Formula  (1.53)  with the given data leads to 
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~
BLF’s on the same vector space
A particular case regarding the (general) definition of a BLF is the one when the
two vector spaces it is defined on coincide, that is  Hence the mapping
is of the form 

 or   (1.54)

In this case, Definition 1.5, Definition 1.6 and PROPOSITION 1.6 still hold, with
slight modifications regarding the memberships of the vectors there involved: 

Definition 1.6'. Let V  be a vector space over the field  K (= ú / = ÷).  A 
mapping  is said to be a bilinear functional (or bilinear form)
if it satisfies both of the following properties (or axioms):  

     (1.36')

   (1.37')

Definition 1.6'.  If is a bilinear form and is spanned by 
  then the coefficients of  f  in the basis are the entries of

the matrix    

           (1.38')

 PROPOSITION 1.6'. (The analytical expression of a BLF in a basis). 
If is a bilinear form with the matrix in basis

of then the value taken by   f   on the pair of vectors with 

(1.52')

then  
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         (1.53')

We do not rewrite the two extended linearities of PROPOSITION 2.1.  Formulas
(1.48) & (1.49) hold without any change, but the memberships in the statement
have to be adapted (with

Remark 2.1.  If the spaces in Definition 1.5, Definition 1.6 and
PROPOSITION 1.6' are respectively equal to and if the
bases are replaced by the standard bases in these spaces, that is

then the coefficients of are the
entries of the matrix  

(1.55)

and the analytical expression a BLF in the standard bases is 

          (1.56)

Certainly, this remark still holds if is replaced by a general field  F.  

In the case when  or the coefficient matrix in
the standard basis is   

and the analytical expression of , that is of is 

(1.57)

Practically, the analytic expression in terms of the components of  
is practically the same as in Eq. (1.56) but the matrix in the middle of the
product is square in  (1.57)  while it was rectangular in  (1.56). 

Example 1.5. If is characterized by its coefficient matrix
in the pair of standard bases by 

   

then 
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~

The next example involves a bilinear form expressed in the basis of 

Example 1.6.  It is required to find the value  of the bilinear form
knowing that 

Equation  (1.57)  with the data above gives 

~

A problem met in the previous subsection for the linear forms should be
also approached for the bilinear forms :
If the bases in the spaces are changed to other ones, how change the
coefficients of the BLF  ?  The answer is given by 

PROPOSITION 1.7. (Changing bases and coefficients of BLF ’s). 
If  is a bilinear form with the matrix  in
the pair of bases of the spaces (respectively) and if  

 by   and    by    (1.58)

then the coefficient matrix of    f   in the new bases  is given by 

  (1.59)
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Proof.  The proof of the formula (1.59) is essentially based on the one of
PROPOSITION 1.4 .  In fact the properties of extended linearity in both arguments
of a BLF, matriceally written in Eqs.  (1.48) - (1.49), should be also extended to
several vectors of scalars (with scalar components) multiplying, at left, a column
of vectors  X  T (as row vectors) and a row of vectors  Y , at right, by several
column vectors. These properties may be written, replacing  X   by  A  and  Y 
by  B, as 

 &  (1.60)

(1.61)

In (1.60), is a matrix consisting of  k rows, each of them with  m  entries
provided  while  R  is a matrix with  R  columns with  n  entries if

 For instance,  

(1.62)

Properties (1.60) and (1.61) can be taken together leading to 

(1.63)
The last step in this proof consists in replacing, in (1.63),

The resulting equation plus the connections from the
old bases, that is and  of Eqs. (1.58), results in the formula
(1.59).  

The particular case when the BLF  f   is defined on the same space, that
is should be again considered. In this case a single basis  A  is involved,
and it is changed to a “new” basis  as in (1.58), but we denote the single
transformation matrix by  T : 

               by (1.64)

Taking now, instead of the two-spaces a single space, adapting the two-bases
formula  (1.59)  with and also using the notations 
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 and  

PROPOSITION 1.7 becomes 

PROPOSITION 1.7 '. If is a bilinear form with the coefficient
matrix in the basis of space  and if this basis is changed
as in  (1.64)  then the coefficient matrix of   f   in the new basis  is given by 

       or    (1.65)

Let us illustrate  PROPOSITION 1.7  by taking two changes of the bases for
the BLF and the two vectors considered in Example 1.4 (at pages 63-64).  

Example 1.7.  If the two bases  are
changed for two new bases, that is with  S  and  with  T  where 

  and  (1.66)

the coefficient matrix in the new pair of bases is, according to formula (1.59),

  

        (1.67)

We can use this “new” matrix for calculating for the two vectors
in the same example. Using the transformation method presented in  § 1.1 –
PROPOSITION 1.6,  – the coordinates of in the new bases can be
found by Gaussian elimination on the augmented matrices 

 

(1.68)
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(1.69)
With the new coordinates in  (1.68)  &  (1.69), the value of the BLF is  

        

Therefore we have retrieved the same value as in Example 1.4 , that was found
using the initial bases. ~

We close this section with giving the explicit analytical expression of a BLF.
In other words, we give the explicit forms of expressions (1.53) & (1.53'),
respectively. 

   If  and   

then the explicit form of  (1.53')  is 

       (1.70)

In the particular case when
and the coordinates of the two vector arguments in basis  A  are 

   

then the explicit form of expression  (1.17)  is 
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                (1.71)

Therefore, in both cases (when  f  is defined on two different spaces or on the
same space), the analytical expression of is a homogeneous function
of order 2 in the coordinates of   in the
considered bases (basis). 

The same property holds for the BLFs defined on the “standard” spaces
 respectively The difference consists in what regards

expressions (1.70) & (1.71) if the vectors are expressed in the standard bases
In fact, the coordinates in these bases are just the

components  of the two vectors The corresponding expressions
of  defined on respectively on  are

      (1.72)

(1.73)

For instance, the explicit expression of the BLF presented in Example 1.6 is 

      (1.74)

Conversely, if a BLF is given by its analytical expression in the components
 of the two vectors  then its matrix in the standard

bases respectively  can be immediately
written.  The subscripts of in the terms correspond to the row
index, similarly for the columns from and the coefficient is just the
entry in position If a term  does not occur in the expression of

then 

Let us close this section with the problem of finding the analytic expression
of a BLF defined  or   by an expression of the form (1.74) 
in another pair of bases or in a basis  A.  The transformation matrix from

L is  while the similar transformation 
L is performed with matrix With these remarks,
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the transformation formula  (1.59)  becomes 

        (1.75)

If the BLF is defined on the same space, that is on   and
L  then the corresponding formula is easily obtained from

 (1.75)  by taking  

     (1.76)
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§ 3.1 - A  APPLICATIONS TO LINEAR & BILINEAR FORMS 

      LINEAR FORMS  

The linear expression of a linear form  in a basis 

A  of  V  is Find a new basis 

    whose vectors are respectively proportional 
to the vector of basis so that the expression of 
 f   in the new basis become 

Determine the real parameter  λ   so that the linear form 
with the coefficients in the 

standard basis  E  map the vector   
onto the value 

A basis and three vectors are considered in space  

        

It is required to find the coordinates of the three vectors in basis  A  and 
the coefficients of  f   in this basis knowing that

 

Hint : The three vectors of coordinates can be simultaneously found by the
method of transformations (Gaussian elimination) on the augmented matrix

 The coefficients of  f   in basis  A  can be determined
by solving the matrix equation A previous
transposition is recommended. 

The coefficients of a linear form  in a basis  A  and of 

V  are
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Find its coefficients in the basis  B  obtained from  A  through the change 
of matrix 

Hint :  The basis transformation means and the new
coefficients can be found with formula (1.21) - p. 82 in  § 2.1. 

Study the linear dependence / independence of the three linear 
forms defined on  whose coefficient rows are written 
together giving the matrices A and B below ; in the case when the 
LF’s are dependent, find a dependence relation among them. In 
which space is this exercise stated ? 

 a)         b)    

Find the common kernel for each set of linear forms in the 
previous exercise. 

The linear form  is given by its analytical 
expression 

(1.77)

Find its coefficients (and write its analytical expression) in the basis 

 (1.78)

Find the value of using both the
standard basis and the basis  A  in the statement. 

Hint : The analytical expression (1.77) can be used after effectively finding the
argument of  f  as a vector in using the vectors of (1.78). The same value
can be found working in basis A but this needs to find the coordinates and 
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the coefficients in the basis  (1.78). The coordinates appear
under  f  in the statement, and the coefficients  can be easily found either
by the appropriate formula in  § 3.1  or by using (1.77). 

   The function  M  is defined, for any square 
matrix  M    by  

is called the trace of matrix  A. It is required to check that this 
function is a linear form on the space of square matrices of order n.   

Hint : A linear combination of two matrices, for instance should be
taken as the argument of the trace function. 

Find the linear forms such that
  and  

     BILINEAR FORMS  

Establish which of the following mappings are bilinear forms : 

Î    

 Ï

 Ð

 Ñ

 Ò   f  : M M
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  Ó

  Ô

Given the bilinear form  

write the coefficient matrix of  f   in the standard basis  E  of  
and then in the basis 

A bilinear form is given by its matrix in a 
pair of bases  A , B : 

It is required to find its matrix in the pair of bases obtained 
from the initial bases by the (respective) transformation matrices 

  and   respectively. 

It is also required to compute  where   
and using the analytic expressions (or 
coefficients) of  f   in both pairs of bases  

A bilinear form is given by its matrix in a 
basis  A  of  V , namely
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It is required to determine the rank of f its
value  for  and and also 
the matrix of   f   in a new basis  B  obtained from  A  by  

    

It is also asked to find the coordinates of the vectors in basis  A and
to check whether the  value  is retrieved when it is computed 
with the analytic information in the new basis, that is with 

Write the matrix (in the standard basis of the BLF 

Then find the matrix of  f   in the new basis 

Finally, calculate the value for 

and  

using both the analytic expression and the analytic information in 
the new basis, that is  

 


