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§ 2.3  SYMMETRIC BILINEAR FORMS AND QUADRATIC FORMS 
The basic definitions and properties of the bilinear forms (abbreviated BLFs) were presented in the
previous  § 2.2 .  Before giving the formal definition of the symmetric BLFs, let us mention that a
symmetric BLF admits its arguments    to be interchanged without changing its value.  

Definition 3.1. Let V  be a vector space over the field K (= ú ).  A mapping  
is said to be a symmetric bilinear functional (or a symmetric bilinear form) if it satisfies both

and of Definition 2.1 plus the symmetry property 

(Symm)            (3.1)


Remarks 3.1.  In the case when the space  V  is defined over the complex field  ÷ , it is possible
(and appropriate) to define the so-called Hermitian BLFs which satisfy a specific version of the
symmetry property (3.1), namely 

          (3.2)

where   denotes the conjugate of the complex number    

An immediate consequence of  Definition 3.1 regards the coefficient matrix of a symmetric BLF
in any basis  A  of  V :   if  f   is a symmetric BLF on L  then its matrix in the (arbitrary) basis 
A  is symmetric :   

       (3.3)

This obvious property directly follows from  Def. 3.1. Indeed, 

    

Definition  3.2.  If   is a symmetric BLF then the kernel of   f   is (the subset of 
V ) defined by 

  (3.4)

Remarks 3.2.  This definition of the kernel of a symmetric BLF seem to be somehow asymmetric
(as to the role of the two arguments). In fact, we could also consider the set 

but it is identical to  Ker f   just because of the symmetry of   f. 
It is convenient to employ a simpler notation for defining the kernel of a symmetric BLF, and also for
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stating / proving other properties of such BLFs.  It is grounded on o more general way to write the values of
a function taken on a whole (sub)set : if  and    then 

(3.5)

A similar notation may also be used in more general cases, when the argument taking all possible
values in a certain (sub) set or (sub)space is one among several variables. For instance, 

(3.5')

With such a notation, the definition of the kernel of a symmetric BLF - Eq. (3.4) - becomes 

         (3.4')

As we saw for the kernel of a linear form (PROPOSITION 1.3 in § 2.1), this subset is in fact more
that a subset of the vector space: it is a subspace. 

PROPOSITION 3.1.  If  is a symmetric bilinear form, then 

  (3.6)

Proof.  We have to check that the subset defined by (3.4) / (3.4') is a subspace since it is closed
under arbitrary linear combinations of (two) vectors. Let us recall the property   from
Definition 2.1'  of  § 2.1 : 

(3.7)

This property with a notation of the form  (3.5')  becomes 

(3.8)

But, by definition  (3.4'),  

|   (3.6). 


Remark 3.3.  Since the kernel of a symmetric BLF is a subspace, it necessarily contains the zero
vector  0, hence it is always nonempty. According to the inclusion relations (3.6) in  Remark 3.2 of
§ 1.3 , for any symmetric BLF  f , 

The two extreme cases in the previous Remark correspond to the situations when only the zero
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vector  0  is mapped onto   by   and to the constant zero BLF  
respectively. A characterization of the kernel of a symmetric BLF (with respect to a certain basis in 
V ) is given by  

PROPOSITION 3.2. If is a symmetric bilinear form and   
is a basis of space V , then 

(3.9)

Proof.   This implication immediately follows from (3.4) in  Definition 3.2 since, for any
 Let us now show that the n equations in (3.9) imply (3.4), that is the

membership    For any   is linearly expressible in the basis  A : 

(3.10)

According to Eq. (2.4) of  PROPOSITION 2.1  in   § 2.2 , 

(3.11)

Hence  and the proof is complete.  

Remark 3.4.  Let us remark that the n equations in (3.9) are equivalent to a homogeneous system
of matrix Indeed, these  n  equations can be expressed, using a matrix notation, as 

(3.12)

The last equivalence in (3.12) follows by transposition and by symmetry of matrix   see  (3.3)
at page 101. Hence the coordinates of any vector in the kernel of the symmetric BLF  f , with its
matrix   in basis A , should satisfy the homogeneous system   

     (3.13)

Hence the column vector of the coordinates of   is given by the general solution of the
homogeneous system in  (3.13). 

This remark gives the ground for stating and proving a property that involves the dimension
of   But its statement needs another notion to be previously introduced. 

Definition 3.3.  Let  be a symmetric BLF.  The rank of   f   is equal to the rank
of its coefficient matrix    in any basis  A  of  V : 
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  a basis of  V .  (3.14)



Certainly, the rank could be defined for more general BLFs of the form as
the rank of any of its matrices in a pair of bases, ; but this notion is less relevant for such
general bilinear forms.  By the way, we briefly mentioned the rank of a BLF in an exercise of  § 2.2-
A , 2-A.3 . 

PROPOSITION 3.3.  If is a symmetric bilinear form (of rank  then 

     (3.15)

Proof.  According to  Remark 3.3 , the coordinates of any vector   should satisfy the
homogeneous system (3.13), whose matrix   is of rank  As it is known
from  §§ 1.2 - 1.3, the subspace of the solutions  S  of such a system satisfies the equation 

(3.16)

But   S   is just  therefore    |  (3.15).  

Example 3.1.  Let   be a symmetric BLF whose matrix in a basis  A  of  V   is 

(3.17)

It is required to find   and to check Eq. (3.15) on this example. 

We can look for the set of solutions of thee homogeneous system (3.13) as the nullspace of the
coefficient matrix of  f .  By (3.17), 

(3.18)

Hence the general solution of this system, giving the coordinates (in basis A ) of a vector in 
can be derived from the last matrix in the sequence of transformations (3.19) : 

(3.19)
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It follows from (3.19) that the general form of a vector in   is 

 (3.20)

   (3.21)

Thus,  since the vectors between ( ... ) and ( ... ) in (3.21) are clearly independent, and
  as it follows from the quasi-triangular form of the last matrix in (3.18), which is rank-

equivalent to    Hence Eq. (3.15) is checked.  ~

Definition 3.4.  Let  be a symmetric BLF.  Two vectors   are said to
be orthogonal with respect to   f   if   In this case we write   Hence, 

                (3.22)


A couple of immediate properties of this binary relation of orthogonality (with respect to a

given symmetric BLF) can be stated : 

PROPOSITION 3.4.  If is a symmetric bilinear form on space  V  then : 

   

   

   

Proof.  Immediately follows from  Def. 3.4  and from the symmetry of  f . 
  is a consequence of  Remark 3.3 : if (at least) one of the arguments of a symmetric BLF  is the
zero vector  0   then This equality also follows from the linearity of any
BLF (not necessarily symmetric) in each of its arguments : for an arbitrary vector    

 

 also follows from the Definition 3.4 and from the extended linearity of any BLF (in the second
argument): see Eq. (2.4) in PROPOSITION 2.1 of  § 2.2 (page 87).   Indeed, 



The relation of orthogonality may be extended from vectors to subsets or subspaces of vector
spaces, as follows : 

Definition 3.5.  Let  be a symmetric BLF and  
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   or   

Then 
(3.23)

(3.24)

If  and (3.24) is satisfied then  W  is said to be the orthogonal (subspace) onto  U and

it is denoted  or simply   when   f  is understood. 

Properties of the orthogonal subset (subspace) onto another subset (subspace) are stated in 

PROPOSITION 3.5.  If  is a symmetric bilinear form on space  V and if  
or  then : 

   

   if  A  spans U  then 

Proof.   will be proved using  Definition 3.1" (in § 1.3, Eq. (3.3)) of a subspace.  Let us
consider two vectors  and two arbitrary scalars  According to
(3.24) in Def. 3.5,   It follows that  

 (3.25)

But (3.25) shows that  is closed under arbitrary linear combinations of two vectors, hence 
holds.  
 Implication ( } ) follows from Def. 3.5 , that is from (3.24) with C, and

   But 

L  

   

The converse implication ( | ) uses the hypothesis that   A  spans U , hence 
A  



Remarks 3.5.  In the statement of PROPOSITION 3.5 we have admitted both variants, that is 
 or  Indeed, it is not essential for U  to be a subspace of V : it may be a simple

subset, but its orthogonal  is a subspace. As regards the orthogonality relation between
a vector and a subset or subspace - see (3.23) - or between two subsets /subspaces defined by
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(3.24), the symmetric relations may also be considered : 

(3.23')

        (3.24')

An example would be useful for illustrating this relation of orthogonality with respect to a
symmetric (as well as the properties in  PROPOSITION 3.5 ). 

Example 3.2.  Let   be a symmetric BLF whose matrix in the standard basis 
E  of   is  

(3.26)

It is required to check that  and then to find  knowing that the
subspace  is spanned by   

Using the analytical expression of a BLF in the standard basis, that is
(2.13)  in  § 2.2 , we have 

In order to find a general vector  Y   in the orthogonal  of the subspace L  we
have to impose the conditions stated in  of  PROPOSITION 3.5 for the two vectors spanning  

 (3.27)

But the matrix equation (3.27) is, in fact, a homogeneous system whose matrix is 

(3.29)

The last matrix in (3.29) offers the general solution of the homogeneous system (3.27), hence the
required vector  

  with  
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Hence the orthogonal subspace of   is spanned by the vector 

The example is over, but let us see a simple way to check this result. It suffices to compute 

 or  

~

In what follows, a new type of mappings is defined and some of their properties are presented. 

Quadratic Forms
Informally, a quadratic form (abbreviated Q-form) is also a scalar mapping but its argument is a
single vector in a vector space and not an odered pair of vector (as it was the case with the bilinear
forms). A Q-form is associated to a symmetric BLF. Its formal definition follows. 

Definition  3.6.  Let  be a symmetric BLF. The mapping  
defined by  

  (3.30)

is said to be the  quadratic form associated to   f  (or induced by  f  ) . 
Some of the notions and results on / regarding the (symmetric) bilinear forms are connected with the Q-

forms. For instance, if  is a (finite) basis spanning the space then the matrix
of the Q-form   in this basis is simply the matrix in of the symmetric BLF   f   it is
associated to, by Def. 3.6 - (3.30) : 

 with  (3.31)

According to the property (3.3) given in this section, the matrix of a Q-form in any basis of the
space is symmetric :  

 since  (3.32)

As regards the analytical expression of a quadratic form in a (fixed / given) basis A , it follows from
definition (3.30) and from Eq. (2.17') in  § 2.2  replacing  by   and   by 
Thus, if the argument of the Q-form is   then 
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          (3.33)

The explicit analytical expression of the (“value” of) a Q-form in terms of the coordinates 
 of  follows from formula (2.23) in  § 2.2 of  ƒA.C., 1999„ , also by

replacing  for :     

       (3.34)

Expression (3.34) gives the reason for using the term of “quadratic forms” :           of Eq. (3.34)
is a homogeneous polynomial or order two in the coordinates   of   x  in basis  A, hence
it is a quadratic function in  n  variables. 

In the particular case when the
analytical expression of a Q-form with matrix notations as in  (3.33)  or under its explicit form of
(3.34)  are obtained from these formulas by replacing 

                          (3.35)

Kernels of Q-forms.  The kernel of a quadratic form as defined by Def. 3.6 - Eq. (3.30) is given
by 

             (3.36)

In fact, this subspace is just the kernel of the symmetric BLF  f   “staying behind” the quadratic
form  according to  (3.33). 
Remarks 3.6. Other earlier defined notions (and properties – stated and proved) for the symmetric
BLFs can be naturally transferred to the quadratic forms.  Let us mention the practical way to find
the kernel of a Q-form  as the kernel of the BLF  f   that defines  as the solution subspace of
the homogeneous system (3.13) :  

(3.37)

If the quadratic form  is defined on space
and it is derived from the analytical expression of  f   or from the coefficient matrix thereof in the
standard basis  E , its expression is of the form (3.35) and the characterization (3.37) of its kernel
becomes 



86    CH. 2    SCALAR MAPPINGS ON VECTOR SPACES 

(3.38)

As regards the rank of , it follows from (3.30) that 

  a basis of  V .  (3.39)

The definition in  (3.39)  includes the case when and then 
will be determined by means of   matrix in the standard basis,   Let us close
this discussion by the remark that the number of terms in the analytical expression of a Q-form ,
let it be either (3.34) or (3.35) theoretically equals  but it can be reduced to   

 

due to the symmetry of   if   then   

(3.40)

Conversely, if  is given by its analytical expression (3.34) or (3.35) involving only 
terms, its matrix in the corresponding basis will be written by a kind of symmetrization: the
coefficients  (or ) will be written as   and the two equal
“halves” of every coefficient of a term  will be symmetrically introduced in 
matrix  (and similarly for  ). 

Remark 3.7.  Formula (3.33) gives the connection from a symmetric BLF to the Q-form it induces.
But there also exists a converse connection, as stated in 

PROPOSITION 3.6.  If is a quadratic form, the symmetric BLF  f  that induces   
by  Eq. (3.33)  is given by  

    (3.41)

Proof.  
(3.42)

(3.43)

Taking the difference (3.42) - (3.43)  we get 

(3.41). 

The proof is thus over. Let us however check connection (3.30) using expression (3.41) of  f  in
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terms of the Q-form : 

 (3.33) 

In deriving (3.41) from (3.42) & (3.43), not only the linearity of   f   has been involved but also its
symmetry. As regards the way we have derived (3.33) from (3.41) – taking – two obvious
properties of a  Q-form have been taken into account : 

  (3.44)

The last equality in  (3.44)  is quite natural for a quadratic function like a Q-form. 


Example 3.3.  Let   be a Q-form whose analytic expression (in the standard basis 
E  of ) is  

(3.45)

It is required to write the matrix of  (in the standard basis E ), to find its rank and kernel and to
calculate   

The matrix in the basis E  of  follows from (3.45), also taking into account one of the 
Remarks 3.6 (mainly relevant for the terms with odd coefficients) : 

(3.46)

 (3.46)  |   

Formula (3.35) with the vector in the statement and matrix of  (3.46)  gives 

~

Diagonalization of the Q - forms 

An important problem concerning the quadratic forms regards the possibility to “simplify” their
analytic expressions. In terms of the matrix-type formulations (3.33) and also (3.35), to obtain such
reduced expressions means to bring the matrix of a Q-form to a diagonal form : the off-diagonal
entries should vanish. Such simplifications can be accomplished by appropriate changes of basis,
which transform the matrix of a symmetric BLF  f   into a diagonal one ; see  § 2.2 - Def. 2.1 at page
35.  The effect of such transformations on analytical expressions like (3.34) - (3.35) should be a
reduction of the  terms in the respective sums to only  terms in the squares of the 
coordinates (components).  A preliminary result – a consequence of a formula presented in § 2.2 
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–  PROPOSITION 2.3' with Eq. (2.29) – should be re-stated for the Q-forms. 

PROPOSITION 3.7.   If is a quadratic form with its matrix  in a basis 
A  of  V  and if the basis  A  is changed for another basis by the transformation      

(3.47)

then the coefficient matrix of   f   in the new basis  is given by 

                   or     (3.48)

It follows to see what kind of transformations have to be applied to the basis  A  in order to
obtain a diagonal expression / matrix for the Q-form  By the way, such a reduced analytical
expression of a Q-form is usually called a canonical expression and it looks like  

 or (3.49)

Several methods  exist for turning the analytical expression / the coefficient matrix of a Q-form
into a “canonical” expression line the ones in (3.49), what is equivalent to bring the matrix 
(and similarly for ) to a diagonal form. The coefficients  that occur in  (3.49)  could be
the diagonal entries in the transformed matrices in (3.48). That is,   

 for   with  (3.50)

The variables with bars denote the new coordinates of the argument vector after the change of
basis :     

Some of the methods we are going to present operate on the analytical expressions, other ones
operate on the coefficient matrices. 

 I.  Gauss’s Method 

This method operates on Q-form’s analytical expression(s), that is  (3.34) or (3.35).  More precisely,
the coordinates of   in basis   the components of   are transformed into new
ones via a chain of linear transformations. We present the essentials of this method in the latter
case, that is for a Q-form  taking a more general field instead of the real field

 would be a fake generalization. Hence the transformations should change an expression like
(3.35) into a canonical expression of the form (3.49), with the (second) notation in (3.50). This
change of the coefficients ia achieved by linear transformations on the components of 

 of the form 

(3.51)

The matrices are square matrices, whose entries have to be
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determined. The idea behind this method is to eliminate the terms in expression (3.34) or (3.35)
containing products of the form In other words, the coefficients  with
should be turned to zero.  A rather intuitive description of the method follows.  Since it is applied
to either of the two kinds of analytical expression (3.34) or (3.35) and also to the intermediate
expression obtained during the application of this algorithm, we denote the coefficients by
instead of or while will denote the coefficients got after a step in a
chain of transformations as in  (3.51). 

If is taken out as a forced factor from the group of terms containing 

(3.52)

   Next, the terms inside the parentheses of (3.52) are written as the square of a linear 

function, minus the terms artificially added : 

(3.53)

where   and contains just the artificially added terms.  If we 
denote 

(3.54)

this is a quadratic form in variables and let us denote it as 

  

The first variable change to be applied is 

|  

This transformation changes the initial Q-form 

into  

(3.55)

The procedure is continued with the Q-form from step    thru 

  and each such cycle creates another “perfect square” term like in  (3.55) until all
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the “mixed terms” are eliminated.  If the last Q-form obtained after the  n - th transformation is  

then the canonical expression of the Q-form is 

(3.56)

The last transformation leading to the canonical expression (3.56) is a simple change of letters /
symbols :  The matrix of this pseudo-transformation is just 

A special case may occur, namely the one when the first coefficient in the initial analytic
expression (or the north-western entry in the initial matrix)  is zero : In this situation, a
preliminary transformation can be applied before the first step   : 

   (3.57)

and te other coordinates / components are identically transformed (re-denoted). This
transformation  (3.57)  introduces a perfect square and the algorithm is continued from
step    with  instead of   

    The way this GAUSS’s METHOD “works” will become more explicit through the following 

Example 3.4.  It is required to bring to a canonical (or diagonal) expression the Q-form 

(3.58)

The first step in Gauss’s method starts by grouping the terms that contain  and then (according
to step by taking together the similar terms. 

    

       
           

     (3.59)

The expression in  (3.59)  determines the first transformation of step 

(3.60)
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    (3.59) & (3.60)  |  

       (3.61)

Proceeding as earlier, the terms of can be grouped and rewritten as 

        (3.62)

The two terms inside ( . . . ) of  (3.62)  would have to produce the square of a linear form, but no
term in exists. Consequently, a transformation of type  (3.57)  should be applied : 

(3.63)

Variables  are simply re-denoted, and, with  (3.62)  &  (3.63)  we
get 

         

            

    

    

   

   

   

   

   (3.64)

A final transformation can turn expression  (3.64)  into a canonical expression. 

 (3.65)
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    (3.64) & (3.65)  |  (3.66)

Comment.  The transformation in (3.62) was applied for illustrating how a square can be formed
when it does not exist: this was the case with the group of terms containing  in (3.61). However,
it was possible to operate another grouping of the terms containing since  existed in
expression  (3.61).  We go along this idea below.  

        

   

   (3.67)

The last three terms of  (3.67), in must be further grouped for turning them into the
square of an LF in a term in or Let us denote this Q-form by  

 (3.68)

It now follows to apply another change of variables, namely 

(3.69)

        (3.67),  (3.68)  &  (3.69)  |   (3.70)
~

As a final remark to this example, let us see that Gauss’s method is not very easy to be applied,
especially to Q-forms defined on many-dimensional spaces; in this case, on But this method
is applicable to any Q-form, yielding a canonical expression. On another hand, at certain steps of
the transformations, several ways to group the terms can be selected. As a consequence, several
final canonical expressions will result. In our case, the canonical expressions (3.66) and (3.70) are
different, but the numbers of positive, respectively negative terms are the same.  This illustrates an
important property of the Q-forms that will be approached a little later.  

Another method to diagonalize quadratic forms is 
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II.  Jacobi’s Method 
This method operates on the matrix of a Q-form (in a certain basis). However, the effective
transformations of basis (or on the coordinates / components of the vector argument) that lead to
the respective canonical / diagonal expression can be identified. 

The matrix of   in a certain basis should be available. If the Q-form  is given 
by its analytical expression (in the coordinates  or in the 
components of   the matrix or   
should be written. 

The “north-western” minors of matrix   or   are calculated : 

 (3.71)

If all the determinants in the chain (3.71) are  then   admits a canonical (or 
diagonal) expression, namely 

 (3.72)

Remarks 3.8.  A special situation occurs when not all the determinants in (3.71) are  for
instance,  

(3.73)

However, in the hypothesis of (3.73) on the rank of the matrix, a reordering of the variables (by
simply reordering them) would be theoretically possible leading to a chain of “north-western”
nonzero minors of the form 

(3.74)

such that a canonical expression of the form  (3.72)  (with r instead of  n ) exists : 

Example 3.4'.  Let us illustrate this remark on the Q-form of Example 3.4.  Let us recall the
analytical expression of that Q-form   - Eq. (3.58)  at page 90 : 

(3.58)
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Since the matrix of   in the standard basis corresponds to the analytical expression (3.58) in the
components of vector    we denote it as 

           (3.75)

It can be easily seen that the chain  (3.71)  of nonzero  minors is broken since 

It is possible to interchange the variables  of  (3.58)  by the simple transformation 

while the other two variables keep their subscripts :   This transformation
changes both the analytical expression on  (3.58)  and the corresponding matrix :  

The matrix in  (3.75)  becomes 

 (3.76)

The chain of determinants  (3.71)  assigned to matrix  (3.76)  is  

The corresponding canonical expression in the components of  by Jacobi’s formula (3.72), is 

(3.77)

Since we used to denote the coordinates in the final (canonical) expression of a Q-form by 
 we may put   

(3.78)

and the final canonical expression is 

(3.79)

It can be seen that expression in (3.79) is somehow similar to the one in (3.69), and the number of



2.3  SYMMETRIC BLFS & QUADRATIC FORMS      95

positive / negative terms in all the three expressions (3.66), (3.70), (3.79) is the same. The
transformation in (3.78) could be written in a similar way as (3.69), but this is not an essential
point. ~

However, a composition of transformations like the ones in Gauss’s method, in terms of
corresponding (triangular) matrices whose product is a matrix giving the connection   

(3.80)

would make possible to identify the basis in which the initial analytical expression (3.34) / (3.35)
takes the canonical form (3.56). The transformations applied in the cycles of steps G.1 , G.2 , G.3
of Gauss’s method result in a triangular transformation matrix : this results from the transformation

 in step G.3  at page 89, follow ed by the other transformations that eliminate, one by one, the
squared variable from each intermediate Q-form.  The matrix of the transformation  in
Example 3.4 follows from its explicit form :  

 with     

For the general transformation  (at page 89) this matrix is 

(3.81)

If the next quadratic form in  Y  is (see Eq. (3.55) at page 89) 

  (3.82)

the next transformation matrix (in   will be of the form 

(3.83)

It can be seen that the matrices  are upper-triangular and each of them contains an
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identity submatrix of decreasing order (in south-eastern / lower-right position) : 

   (3.84)

But the last (pseudo)transformation matrix is just corresponding to  see the mention
at the end of step  G.3  in GAUSS’s METHOD - page 89.  

The compound effect of these transformations, from the initial variables (= the components of
re-denoted as  )  to the last ones of may be described by 

(3.85)

The last basis resulting from the initial base (in our case  or ) can be looked for in terms of
a triangular transformation, corresponding to the triangular change of coordinates of  (3.85), under
the form  

 where   (3.86)

If, in basis the analytical expression of the Q-form was (according to Eq. (3.34))

 with  (3.87)

then, in order to obtain the canonical form of   in basis the symmetric BLF 
 f  should satisfy the equations    

(3.88)

It is rather easy to see that, if  then Indeed,
it follows from (3.86)  that  hence  

(3.89)

The expression of   comes from the second row in matrix (3.86) :  

 

(3.90)



2.3  SYMMETRIC BLFS & QUADRATIC FORMS      97

The implications of  (3.89)  &  (3.90)  hold for the next subscripts on   until  It follows
that the conditions to be imposed on the transformation coefficients  –  the entries of the matrix   
in (3.86)  – are 

(3.91)

The explicit expressions of the vectors of basis  in terms of the vectors of 
follow from  (3.86) : 

(3.92)

Conditions  (3.91)  plus expressions  (3.92), up to  j,  lead to the linear system 

(3.93)

The matrix of this system is the square submatrix of  of order  j, whose determinant is 
 According to Cramer’s rule, this system admits a unique solution, namely 

(3.94)

Let now  be the matrix of the Q-form in basis Then, for any
 we have  

  (3.95)

for any  since the matrix is symmetric.  Next, 

  (3.96)

In  (3.95),   since   and the first  equations in  (3.91)  hold ; in  (3.96), 
by the last equation in  (3.91) . 

Hence, the analytical expression of  the Q-form in basis  is 

            (3.97)
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The previous discussion is more than that. We may now state a result which has just been,
practically, proved. 

PROPOSITION 3.8.  ( Jacobi’s Method )  If is a quadratic form with its matrix 
 in a basis  A  of  V with the chain of principal minors of  (3.71)  being nonzero, and if 

 is a new basis obtained from A  by the transformation (3.92), with the
entries of the transformation matrix satisfying system (3.93) and the matrix of  in
basis  given by expressions (3.95) & (3.96), then the analytic  expression of  is  (3.97).
 

We illustrate Jacobi’s method for diagonalizing Q-forms by the next two examples. 

Example 3.5.  Let us consider the quadratic form defined by 

 (3.98)

   (3.98)  |  (3.99)

Jacobi’s chain of minors (3.74) follows from  (3.99) : 

 

By formula (3.97), the canonical expression of  is 

(3.100)

This example was found in the textbook [M. Rosculet, 1987], where Gauss’s method is also applied
to the Q-form in   (3.98).   ~

Example 3.6. Another quadratic form is defined by 

(3.101)

  (3.101)  |   |   |

          |  (3.102)

The “canonical” basis in which the analytical expression of the Q-form is (3.102)
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can be found by writing and solving the systems (3.93) that are implied by Eqs. (3.91) :  

(3.103)

We keep the notation for Q-form’s matrix in a general basis, that is  
instead of the specific notation for the standard basis of of   

  (3.92)   |  (3.104)

Three systems of the form  (3.93)  are respectively obtained for  and   

(3.105)

For the next two systems we write the respective equations and their augmented matrices. 

 |  (3.106)

 |  (3.107)

Jacobi’s condition on the north-western minors imply that the systems (3.106) & (3.107) are of
Cramer type and can be solved by Cramer’s method.  

    (3.106)   | (3.108)

    (3.107)   | (3.109)

and – similarly –  
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(3.110)
For the numerical data in the statement of this example, leading to   matrix in the standard

basis  

(3.111)

the entries of transformation matrix in (3.105) & (3.108) - (3.110) are 

 

  

      

It follows that     

    (3.112)

According to the formula that gives the transformation matrix from the standard basis E of space 
to another basis, let it be our  in the matrix of this basis is just the

transpose of  T ;  see  at page 23 in  § 1.1.  Hence  

(3.113)

Certainly, certain entries of  (3.112) & (3.113)  could be simplified but we leave them as such in
view of a checking that follows. 

When a basis is changed for another, the matrix of a BLF (defined on the same space) changes
by Eq. (1.65) in  § 3.1, page 68 or Eq. (3.40) in  § 2.3  at page 98 of  ƒA.C., 1999„.  In particular, when
the standard basis L  then

(1.65)

Taking in  (1.65) ,  the transformation matrix of  (3.113)  should bring the
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matrix  of  (3.111)  to a diagonal form. 

      

      

Hence, the diagonal matrix corresponding to the canonical expression (3.102) has been retrieved. 
The canonical basis is just  C  of  (3.113).  ~

The next method for diagonalizing quadratic forms is based upon certain properties of square
matrices. The matrix of the Q-form in a starting basis  A  (or  E ) of space V  is changed by a special
type of transformations resulting in a diagonal matrix,  

   (3.114)

But the transformation matrix  T   turning the initial matrix 

 or  

of the symmetric BLF  that determines  into a matrix of the form (3.114) can be obtained in a
special way. More precisely, T   has to be an orthogonal matrix, according to the definition that
follows. Hence, a couple of preliminaries are necessary. 

Orthogonal Matrices 

Definition 3.7.  A square matrix  M  is said to be orthogonal if  

      (3.115)

The (Euclidean) inner product of two vectors is defined by 

(3.116)

The vectors  of  (3.116)  are said to be orthogonal if The
(Euclidean) norm of a vector is defined by 
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(3.117)

A vector  is a unit-norm (or unit ) vector if Two (or more)
vectors are said to be orthonormal if they are orthogonal unit vectors : are orthonormal
if  and     

Comment.  The relation of orthogonality between two vectors (in a space with a symmetric BLF
f  defined on it) was earlier met in this Section 3.1, but that relation of orthogonality was
dependent on the considered BLF  f .  In fact, the operation of inner product in (3.116) is just a
symmetric BLF whose matrix (in the standard basis ) is the identity matrix   But these notions
introduced by  Def. 3.7  will be studied, in more detail, in CHAPTER  4. We have presented them
here since they are going to be involved in the following result, on the properties pof the orthogonal
matrices.   

PROPOSITION 3.9.  (Properties of Orthogonal Matrices)  If M  is an orthogonal
matrix then :  

   A  is nonsingular and (hence) invertible, with    (3.118)

      The rows and the columns of  A  are pairwise orthogonal and, moreover, 

(3.119)

(3.120)

    The rows and the columns of an orthogonal matrix  A  are orthonormal vectors  
    If  M  are orthogonal matrices then their product is orthogonal, too. 

Proofs.   Immediately follows from  Def. 3.7 , Eq. (3.115) and from the definition of an (the)
inverse of a square matrix (see § 1.2 and PROPOSITION 2.5 for inverse’s uniqueness in [A. Carausu,
1999] - page 30). The invertibility of  A  follows from the same P. 2.5 but also from (3.115) and the
property of the determinant of a matrix product see   in PROPOSITION 2.3 - page 28 in
the same textbook. 

    (3.115) |  (3.121)

In fact, the determinant of the transpose of a matrix equals the determinant of that matrix, hence
(3.121) may be rewritten as 

(3.122)

The equation  of (3.118) immediately follows from the uniqueness of the inverse.  
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    follows from the definition of the matrix product (see § 1.2 in ƒA.C., 1999 „ ). Indeed, the
current entry in the product of  (3.115)  is the inner product of  i-th row of  by the  k-th column
of 

:  (3.119)  

since Kronecker’s  is the current entry of the identity matrix The proof of (3.120), involving
two columns of the matrix , is similar. 

   is an obvious consequence of property : it follows from (3.119) - (3.120) that any two
distinct rows / columns are orthogonal, and the norm of any row / column is - according to
definition in  (3.117) - 

Similarly, the columns of matrix   are unit vectors, too. 

    We have to check the definition (3.115) for the matrix product by PROPOSITION 2.7
in  § 1.2  (Eq. (2.22) at page 33 of  ƒA. C., 1999 „ ),  



Another pair of notions connected with a square matrix  needs to be introduced by 

Eigenvectors and Eigenvalues 

Definition 3.8.  Let M  be an arbitrary square matrix of order  n.  A column vector
 is said to be an eigenvector of matrix   if there exists a scalar  such that 

    (3.123)

The scalar  that occurs in (3.123)  is called an eigenvalue of matrix   

Certainly, the “C dot” that we have used in the proof of the above property  as well as in 
(3.123)  could be omitted. It stands for the product of matrices, an operation that is often denoted
by simply juxtaposing the two matrix factors: In the left-hand side of (3.123) a square matrix
times a column vector gives a column vector ; in the r.h.s. of the same equation, the column vector 

 multiplied by the scalar  remains a column vector in 
 We do not here insist on the properties of the eigenvalues and eigenvectors of a square matrix.
They will be met later, in CHAPTER 4 (on linear morphisms). It should however be noticed that an
eigenvector    is connected with the eigenvalue  through Eq. (3.123). This defining equation
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can be equivalently written as 

  

    }|   (3.124)

This last equation (3.124) is a matrix equation which is equivalent to a homogeneus system of
matrix   and we have to look for nonzero (or nontrivial) solutions  of its. As it is known
from the highschool Algebra (and recalled in  § 1.2  of  ƒA. C., 1999 „ ), a homogeneous system
admits nontrivial solutions if and only if the rank of its matrix is strictly less than the numbers of
unknowns. If the system is square of matrix  M, this condition is equivalent to If we now
take   the condition for the existence of nontrivial solutions to this system becomes 

            (3.125)

In fact, this is an algebraic equation of order  n  over the field  but – in a more general approach
– even Definition 3.8 can be reformulated by simply replacing the real field with a more general field

 (or  ) since the l.h.s. of Eq. (3.125) is just a polynomial of order n. It is called the characteristic
polynomial of matrix  A  and it is (usually) denoted as 

 (3.126)

An important problem concerns the roots of Eq. (3.125).  If the field    is algebraically closed, then
an equation of the form  with   admits exactly  n  roots in that field, let
them be   that can be distinct or not. The complex field  ÷  is algebraically
closed (Galois’s Theorem). But if the field is not algebraically closed – and this is the case for the
real field – the number of roots in that field can be less than n  and even = 0. We give (without
proof) a property of the symmetric matrices over  which is relevant for the diagonalization of
the Q-forms : 

PROPOSITION 3.10.  If  M  is a symmetric matrix then all its eigenvalues are real :  

M  &  (3.127)

The set of eigenvalues of a square matrix is called its spectrum. Hence, the latest PROPOSITION
states that the spectrum of a symmetric matrix over  consists of real elements only. The spectrum
of a square matrix If  M  is denoted  

The next definition introduces a binary relation among the square matrices. 
Definition 3.9.  If  M  are two matrices, then they are said to be similar if  

  M  (3.128)

A matrix M  is said to be diagonalizable if there exists a diagonal matrix  D  that is
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similar to  A . 

In other words, a matrix  A  is diagonalizable iff there exists a diagonal matrix 

 and a nonsingular matrix S such that  But the notion of
orthogonal matrices makes possible to state an alternative to Definition 3.9, in fact a result of
equivalence (that is, a characterization).  

PROPOSITION 3.11.  If  M  are two matrices and P is an orthogonal matrix such that 

       (3.129)

then A & B  are similar matrices. If  B  is a diagonal matrix then  A  is diagonalizable. 

Proof. This result immediately follows from Definition 3.9 and from the remark following
Definition 3.7 : for an orthogonal matrix  P,   



Let us now consider the case when matrix  A admits  n  eigenvalues  that
can be distinct or not.  At least one eigenvector  corresponds to each eigenvalue   and they
are connected by a relation of the form (3.123). We write down these  n  equations (but without the
C-dot for the matrix product) :  

        (3.130)

These n  equations, whose left and right sides are column vectors, may be written together as a
single matrix equation, as follows.  If we denote   the diagonal matrix whose
entries on the (main) diagonal are just the  n  eigenvalues of matrix  A  then the  n  equations of
(3.130)  can be written together as the following matrix equation : 

     (3.131)

Indeed, the first column in the product of the rightmost side in (3.131) comes by multiplying the
whole matrix  by the column   what results in  and
similarly for the next   columns.  Let us now denote 

         (3.132)

    (3.131) & (3.132)  |     (3.133)

Let us now compare this Eq. (3.133) with the equation defining the similarity relation between two
square matrices, that is (denoting the similarity relation by ~ ) 

(3.134)
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This equivalence of  (3.134)  holds only if the matrix  S  is nonsingular, hence invertible, in an
equation of the form 

(3.135)

The left-hand side of Eq. (3.133) coincides with the l.h.s. in the second equation between  [ . . . ] of
(3.135). Hence we could draw the conclusion that 

(3.133)  |   (3.136)

but only provided the matrix  S   be invertible. 

We have denoted by  S, in (3.132), the matrix whose columns are  n  eigenvectors 
corresponding to the n eigenvalues of matrix Hence a (first) condition on the vectors 

  for the non-singularity of matrix  S  consists in their linear independence. See the
second definition of the rank of a matrix in  § 1.2 , proof of  PROPOSITION 2.9 at page 39 in   ƒA. C.,
1999 „  ; certainly, the eigenvectors should be mutually distinct.  

Coming now back to the problem of diagonalizing a quadratic form it follows from this
discussion that –  if  n  independent eigenvectors corresponding to  n  eigenvalues  
can be found  – then a matrix built with these eigenvectors as its columns can be used for getting
a diagonal form of the matrix of  in an “initial” basis, let it be   or

 or    like in Example 3.6 at pages 98-99, when the Q-form is given by its
analytic expression.  Moreover, if such and invertible matrix   is available,
then the similarity transformation  of  (3.134) – (3.136) will provide a diagonal form of   
matrix, with the  n  eigenvalues of matrix  A  on its diagonal, as it follows from  (3.136).   

But if we require more from   S, namely to be not only non-singular (hence invertible) but even
orthogonal, we could use the similarity relation and transformation by orthogonal matrices, as in
previous PROPOSITION 3.11.  The conclusions of this discussion can now be formulated in terms
of the next result : 

PROPOSITION 3.12.  If is a quadratic form with its matrix  in a basis  A 
of  V , if   are n orthonormal eigenvectors of   corresponding to the eigenvalues

 and we denote  then  is an orthogonal matrix and  

(3.137)

Proof.  Let us represent the relationship eigenvalues - eigenvectors as follows : 
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(3.138)

The vertical arrows in this diagram do not represent a one-to-one correspondence. Each distinct
eigenvalue may be either a simple root of the characteristic equation (3.125), or 
(possibly) a multiple root, of multiplicity  This latter situation occurs then and only then
when the characteristic polynomial   with  contains a factor
of the form  and this eigenvalue  does not appear elsewhere in the factorization of  
If eigenvalue   multiplicity is  then it occurs exactly  times on the first row of (3.138)
and also in the diagonal matrix of  (3.136).  But exactly  distinct and linearly independent
eigenvectors should be found and they will appear on the second row of (3.138), under the repeated

 occurrences of  .  In  (3.138), the eigenvalues  may be written in any order,
but it would be convenient to write them according to the  # order relation, when they are real : 

 This discussion on the eigenvalues and eigenvectors of a square matrix
will be extended in Chapter 4 - § 4.3, dealing with linear endomorphisms and their
diagonalization. 

Coming back to the proof of the assertions in the statement, the hypothesis that 
are n orthonormal eigenvectors of  obviously implies the orthogonality of the matrix

 The current entry in the product  is  

(3.139)

The first equation in (3.138) follows from Definition 3.7 - page 101.  Equation (3.137) readily
follows from  (3.136)  with   and the property of any orthogonal matrix that its transpose
is just its inverse : Eq. (3.40) in  PROPOSITION 3.9  at page 98 of .  As a matter of notation, we are
going to change the notation for unit eigenvectors in order to distinguish
between general eigenvectors and unit eigenvectors – a little later. 

Before presenting the algorithm for diagonalizing Q-forms by means of eigenvalues,
eigenvectors and orthogonal matrices, let us see that the left-hand side of Eq. (3.137) is quite similar
to the r.h.s. of  Eq. (2.29) in  § 2.3 - page 94 of  ƒA. C., 1999 „ or to Eq. (3.78) at page 108 of the same
reference ; certainly, the eigenvectors should be mutually distinct.  In fact,  is obtained
from  by simply taking  If the Q-form is defined on a space like  then the
transformation matrix from the standard basis   to any other basis of this space, let it be the
“canonical” basis C, is just 

 (3.140)

Remark 3.9. This last equation in (3.140) has both a theoretical significance and a practical
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importance, as well. If  n  independent and mutually orthonormal eigenvectors corresponding to
the  n  eigenvalues  have been found, then they form just the canonical basis in which
the matrix of the Q-form takes the diagonal form of (3.137).  But if the vectors on the second row
are  only independent, they should be checked for mutual orthogonality and they have to be
“reduced” (or normalized) to unit vectors ; if they are not orthogonal, some vectors may be
replaced for obtaining the condition Next, we should turn    

(3.141)

The C-dot in (3.141) is the (Euclidean) inner product of Eq. (3.116) - page 126. 

The practical ways to perform these obtain a canonical basis and the corresponding diagonal
matrix of (3.137) are presented in what follows. 

III. Diagonalization of Q-forms by Orthogonal Transformations 
 (The  EVV Method )  

Given a Q-form   the  n eigenvalues  of matrix   
are determined from the characteristic equation (3.125). 

  For each distinct eigenvalue   the homogeneous system of matrix 

 that is  (3.142)

is solved.  If   is the set of nontrivial solutions to the system (3.142), a basis  

 with   L (3.143)

has to be found.  The natural number   that occurs in (3.143) equals the dimension 
of the subspace that is  Recall from § 1.2 that the 
solution set  S  of any homogeneous linear system is a subspace. 

If, in step OT.2, it has been found an eigenvalue  such that  the (algberaic) 
      multiplicity of that root of Eq. (3.125), the algorithm has to be STOPped : the method 

of orthogonal transformation cannot be applied since a diagonalization of matrix  
 in the sense of Eq. (3.136) - by a similarity transformation - is not possible.  

If  then the EVV-based Method is applicable and the 
algorithm goes on.   

The subsets (sub-bases) of eigenvectors  are joined resulting 
in a basis of  n  eigenvectors,  

(3.144)
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  This basis of  (3.144)  is turned into an orthonormal basis as follows : 

     The vectors   are checked for orthogonality : 

If a pair of vectors is found to be not orthogonal, one of them is replaced by
another vector taken from the solution set  of the same homogeneous
system whose matrix is the one of  (3.142) and the procedure is continued
until all the n  vectors are mutually orthogonal.  

     Each vector  is replaced by its corresponding unit vector :  

  (3.145)

The resulting basis is the canonical basis  

The orthogonal matrix  is written and transformation (3.137) is 
applied, turning the matrix  of   (in the initial basis) into the diagonal matrix 

    (3.146)

Remarks 3.10.  This last step of the algorithm may be omitted. If all its previous steps were
correctly applied, the matrix of   in the canonical basis  is just the diagonal matrix in (3.146).
However, this transformation (in the l.h.s. of (3.137), (3.146)) is recommended as a way to check the
correctness of the calculations.  The analytical expression of the Q-form in the basis   is 

    where  (3.147)

This algorithm could be perceived as a rather cumbersome method, but it offers the advantage to
provide the canonical basis  (when it is applicable : see step OT.3). 

We are going to illustrate the application of this ORTHOGONAL TRANSFORMATION (or  EVV
based) METHOD by a couple of examples. 

Example 3.7. A quadratic form on space   is defined by its analytical expression 

(3.148)

It is required to diagonalize it, by the EVV Method. 

The Q-form’s matrix in the standard basis of is 
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(3.149)

OT.1.   The corresponding characteristic polynomial is  

(3.150)

The characteristic equation  has the three (distinct) roots  

(3.151)

OT.2.  The three corresponding eigenvectors are found by solving the homogeneous linear systems
    of the form  (3.142). We successively solve them by Gaussian elimination. 

gives the general solution 

. (3.152)

Hence, the first eigenvector corresponding to   is  

Similarly, for  

 

   (3.153)

  



2.3  SYMMETRIC BLFS & QUADRATIC FORMS      111

   (3.154)

In  (3.152-154) we have re-denoted the secondary (parametric) variables of the three systems :  

OT.3.  The strict inequality   is not met for any eigenvalue since the three roots of (3.150) 
are simple. 

OT.4 & OT.5 :   It is easy to see that the three vectors are pairwise orthogonal : 

while their norms are equal :    Therefore, the three unit and mutually
orthogonal eigenvectors are 

(3.155)

The orthogonal matrix of  (3.141) - page 108  is  

 (3.156)

OT.6.  The orthogonal transformation, applied to the initial matrix   of  (3.149)  gives 

     

Hence the diagonal matrix of  (3.146), with the eigenvalues of  (3.151)  has been found. 

The corresponding canonical expression of the Q-form is 

(3.157)

The coordinates that occur in (3.157) are  (the components of)  with the ortho-normal
basis whose (eigen)vectors are the ones of  (3.155).  ~
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The next example shows how the orthogonal vectors   can be obtained when
some of such vectors, obtained by solving the homogeneous systems (3.142), are not orthogonal. 

Example 3.8. A quadratic form on space  is defined by its analytical expression 

(3.158)

It is required to diagonalize it by the EVV Method. 

    (3.158)   |       (3.159)

The characteristic polynomial of this matrix is 

(3.160)

    (3.160)  |     (3.161)

The eigenvectors corresponding to the triple root are obtained by solving the H-system of matrix 

(3.162)

The three column vectors that occur in then rightmost side of (3.162) are – of course – 
The fourth eigenvector comes from 

     (3.163)

Checking for orthogonality the four eigenvectors in  (3.162-163) : 
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(3.164)

It follows from (3.164) that no pair of orthogonal vectors exists among  Instead, 
 Two vectors among   should be replaced in order to

get an orthogonal family of vectors. Each candidate should be in the solution (sub)space of system
with the matrix in (3.159). Hence, each of them should be of the form (3.162). We successively
impose the condition of orthogonality on and between   

 (3.165)

(3.166)

The two equations of (3.165) & (3.166) coincide, but we can obtain two distinct vectors as follows.

   Eq. (3.165) |  (3.167)

It is easy to see that of (3.167) is orthogonal on  for any values of the two
parameters. Giving particular values to the two parameters that occur in (3.167) we can get the
second and the third eigenvectors to replace 

 and  (3.168)

  (3.162), (3.163) & (3.168)   | 

|  (3.169)

Therefore the four eigenvectors are mutually orthogonal and the must now be turned to unit
vectors. The norms of the four vectors are 
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(3.170)

(3.162), (3.163), (3.168) & (3.170)   | 

   |   (3.171)

The four unit eigenvectors of (3.171) form the orthonormal basis  C  in which the Q-form’s matrix
should be diagonal :    

We can check this conclusion by introducing our data in the left-hand side of Eq. (3.146), with

       (3.172)

(3.172)   |   (3.173)

For calculating the product of three matrices  we take outside the two scalar factors whose

product gives  From (3.172), (3.159) and (3.173) we get  

         



2.3  SYMMETRIC BLFS & QUADRATIC FORMS      115

       (3.174)

The canonical basis in which Q-form’s matrix has taken a diagonal form is just  C whose vectors
are the columns of the matrix in (3.174) :  The four unit vectors are mutually
orthogonal.  Although this equation is almost identical with that of (3.173), we keep the notation 
C  for the canonical  basis, while  P  denotes the orthogonal transformation matrix of (3.142). 

The canonical analytic expression of the Q-form (3.158) in this basis  C  is 

 with   (3.175)
~

An interesting and rather important feature of a diagonalized Q-form is the number of the
positive, negative and zero terms in a canonical expression of the form (3.49) - at page 88, or
(3.147) in terms of the eigenvalues.  This feature is called the signature of the Q-form.  Let us
denote it by 

(3.176)

with   the number of positive terms,   the number of negative terms,   the number of
zero terms. For instance, the signature of the Q-form in the latest example is - according to (3.175) -

 The signatures of the Q-forms in Examples 3.6 - Eq. (3.102) and 3.7 - Eq.
(3.157) are – both of them –   Obviously, the number of non-zero terms in a
canonical expression is   This follows from the rank of the matrix of a Q-form
in an “initial” basis is kept by the transformations leading to a diagonal form, and the rank of a
matrix like  is clearly equal to the number of non-zero entries on its main
diagonal.  

The signature of a quadratic form is intrinsic to a given Q-form, in the sense that  is the
same for any of its canonical expressions. This remarkable property is known as SYLVESTER’s
INERTIA THEOREM.  
THEOREM 3.1.  (Sylvester) If   is a quadratic form, then the signature of   is the
same for any of its diagonal (canonical ) expressions  (3.49) - page 88. 

Proof.  Let    be a basis in which the Q-form  has a canonical expression, 

with  (3.177)

If the vectors   are replaced by the vectors   
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 while  (3.178)

a new basis is obtained, namely   in which the expression of (3.177)
becomes  

 where   (3.179)

In this way we may assume, from the beginning, that all non-zero coefficients in the canonical
expression of  (we start from) are The fact assumption the positive and respectively
negative terms in expressions (3.177) and (3.179) appear in “compact trains” does not reduce the
generality. If, in a certain canonical expression, the terms with coefficients 
appear in “mixed” sequences, a simple renumbering of the variables will bring such an expression
to the form in (3.177). It is just the way we forced a Q-form with  to accept a canonical
expression by Jacobi’s method in Example 3.4' - pages 117-118 (Eqs. (3.75) & (3.76)).  

Let  then  and  be two bases of space  in which the Q-form  has the canonical
expressions  

 in basis  (3.180)

 in basis  (3.181)

Let us notice that the numbers of positive, respectively negative terms in the two expressions
(3.180) & (3.181) are assumed to be possibly different. In  (3.180)   while,
in  (3.181),   Let us assume that  and admit the case when  

Consider now the two subspaces spanned by two smaller sub-bases of   and  

 L L (3.182)

Since  it follows from Grassmann’s formula (THEOREM 3.1 in  § 1.3, page 65,
Eq. (3.17) in ƒA. C., 1999„  ) that 

(3.183)
Hence there exists a vector such that  

(3.184)

Since  it follows from (3.180)  that  

(3.185)
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and from  (3.181)  that  

(3.186)

The contradiction between the inequalities (3.185) & (3.186) is obvious, so   is impossible and
the same holds for the symmetric inequality, so   Consequently, the signature of a Q-form
under canonical expressions is the same in any (canonical) basis. 

Comments.  A proof of SYLVESTER’S INERTIA THEOREM can be found in the textbook [C. Radu,
1996]. We have followed the way of proof in this reference until Eqs. (3.180) & (3.181) but we
continued along the simpler and more elegant setup in another monograph of LINEAR ALGEBRA,
namely [E. Sernesi, 1993, pages 234-235].  Certainly, we have adapted the notations used by the
two authors to our notations like  for the Q-forms, the bases written as ordered n-tuples (rows)
of vectors like in  (3.180) to (3.182), and notation (3.176) for the signature of a quadratic form. 
Here we must mention that the definition of this numerical characteristic is slightly different as
given by E. Sernesi. It is given in terms of positive and negative terms only : 

 

Clearly, the two definitions are wholly equivalent. From a signature of the form  it
follows that   Let us close this comment with the remark that the Q-
form is degenerate   

In  [E. Sernesi, 1993], a canonical expression of the form  (3.180) is called a normal form. In
fact, it is a canonical expression like (3.177) with the coefficients turned to  by the basis
transformation (3.178). 

The structure of the matrix of a Q-form with  and a canonical expression like
(3.180)  is 

(3.187)

The zero blocks in (3.187) have appropriate sizes ; for instance, the north-eastern block is of size 

Definition 3.9. A quadratic form  (defined) on a real vector space   is said to be 

    positive definite if    

    positive semi-definite if    

   negative definite if    
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   negative semi-definite if  

    indefinite if   does not satisfy any of , . 


Obviously, if   is positive or negative definite it is also positive or negative semi-definite ,
respectively. If it is neither positive nor negative semi-definite it is indefinite. The normal forms
corresponding to the five types of quadratic forms are more relevant to the ways their canonical
expressions look.  A table-like characterization is given in [E. Sernesi, 1993], page 236. We offer a
slightly more complete characterization, with the signs / (in)equalities for the three components
of a Q-form’s signature. For the semi-definite cases it is assumed that  while 

 for the indefinite case. Let us recall that   

Table 3.1   Types of quadratic forms 

    Type     Normal form Signature 

PD    -    

PsD  -    

ND   - 

NsD - 

ID  -         

With reference to a couple of earlier examples, let us write down the signatures of the Q-forms
that were diagonalized. We also recall the pages where those examples appear. 

Ex. 3.4 pp. 90-92,  Gauss Eqs. (3.58)   &  (3.70)  

Ex. 3.4' pp. 93-95,  Gauss Eqs. (3.58)   &  (3.79)

Ex. 3.5 page  98  Jacobi Eqs. (3.98)   &  (3.100)

Ex. 3.6 page  98  Jacobi Eqs. (3.101) & (3.102)

Ex. 3.7 pp. 109-111,  OT-EVV Eqs. (3.148) & (3.157)

Ex. 3.8 pp. 111-115,  OT-EVV Eqs. (3.158) & (3.175)

The equation numbers where the initial expressions of the Q-forms appear are written in smaller
font (11 pt). The reader is asked to apply other methods among G, J, OT for checking TH. 3.1. 
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§ 2.3-A   APPLICATIONS TO SYMMETRIC BLFS & QUADRATIC FORMS 

Given the symmetric BLF with its matrix in basis 

 

it is required to find a basis spanning each of the subspaces and 
 is spanned by   

Diagonalize the following quadratic forms , using either  of 
the available methods : 

  

 

 

 

 

 

 

 

Specify the final (canonical) bases when eigenvalues and eigenvectors are 
used, and try to check the results with Eq. (3.146)  - page 109, as in Examples 
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3.7 - page 98 and 3.8 - page 111-115, see transformations leading to the diagonal 
matrix in (3.174) . 

Diagonalize the Q-form 

using eigenvalues and eigenvectors ; specify a basis in which   is diagonal. 

Write the analytical expression of the symmetric BLF whose associated Q-
form is the preceding one (in 3-A.3). 
Given the symmetric bilinear form  by its matrix in the 
standard basis  E,  

it is required to write the analytical expression of the associated Q-form  
to determine the subspaces and where  is spanned by the 

vectors  Find a basis (or a vector) spanning  
and check whether the intersection is trivial or not. Then write the general 
expression of a vector in    

    
Write the following Q-forms under the matrix form  and 
bring each of them to a diagonal (canonical) expression :  

  

 

 

 

 

Diagonalize the quadratic form 

using the method of orthogonal transformations - EVV.  Check the result with 
formula (3.146) at page 109 and write the corresponding canonical and 
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normal expressions. 

Note : The subspace corresponding to the eigenvalue is two-
dimensional, and an orthogonal basis spanning it has to be found.  

Show that the connection from a Q-form to the symmetric BLF f which 
determines it , by that is formula (3.41) in PROPOSITION 3.6 
at page 110, can be replaced by the somehow simpler formula 

since it is equivalent to the connection (3.41). 
 

121


