
Chapter 4
MORPHISMS OF VECTOR SPACES

 § 4.1 LINEAR TRANSFORMATIONS 
The linear transformations are mappings between (two) vector spaces. They are
similar to the homomorphisms met in the theory of algebraic structures :
homomorphisms of groups, rings and fields. That is why such mappings are
also called linear morphisms or morphisms of vector spaces. However, the
terminology for such mappings differs from one textbook (or monograph) to
another, from one author to another. Let us mention that, in the excellent
monograph [G. Strang, 1988], page 116, the term of  transformation  is used.
Such mappings are presented in close connection with matrices and they are
initially defined on the most usual vector space, that is For transformations
defined on space geometric interpretations are also given.  In the textbook 
[E. Sernesi, 1993] , the term of  linear maps is preferred : Chapter 11 (from page
145) bears just this title. We prefer the term of linear transformations for
mappings defined on a vector space and taking values into / onto another
vector space. But the more general term of  linear morphisms covers all the
cases. 

Definition 1.1. Let  be two vector spaces over the same field K (= ú
/ = ÷).  A mapping is said to be a  linear transformation (or
linear morphism) if it satisfies both of the following properties (or axioms): 


Remark 1.1.  Property states that a linear transformation or morphism
is additive with respect to the vector sum in both spaces respectively. 
Property states that a linear morphism is homogeneous with respect to
the external operation of multiplication by scalars (also defined in both spaces).
Let us recall that – formally speaking – these two properties were also satisfied
by a linear form : Definition 1.1 in  § 3.1 – page 49. Certainly, the two operations
should be differently understood in the two sides of each equation : in the case
of linear forms, the two linear operations were acting in the vector space V   for
the left-hand sides, while they were the field operations of addition and
multiplication in the field of scalars, for the right-hand sides : see &

122
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at page 49. In the case of linear morphisms, the addition and
multiplication by scalars occur in both sides but they act on (possibly) different
vector spaces,

Other properties of the linear forms (LFs) are formally retrieved for the linear
transformations / morphisms. For instance, properties (axioms)  and

 in  Def. 1.1 may be replaced by a single property / axiom ensuring that
a linear mapping  is a linear transformation. 

Definition 1.1'. Let  be two vector spaces over the same field K (= ú
/ = ÷).  A mapping 

                         (1.1)
is a linear transformation (or linear morphism) if it satisfies 

    

  

          (1.2)



The equivalence between the two definitions is rather obvious. It can be checked
as the similar equivalence for the LFs. Indeed, 

  

Conversely, 

  

Property is the linearity and it just gives the terms of linear
morphism or  linear transformation. 

Let us also see that this property or (1.2) could be replaced by an
even simpler one : 

(1.3)

but we prefer (1.2) since it admits a generalization to arbitrary linear
combinations of (several) vectors under
PROPOSITION 1.1.  If  is a linear transformation / morphism
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then 

                      (1.4)

Proof.  Formally, the proof is just the same as for the linear forms, in  § 3.1 –
PROPOSITION 1.1 at page 50 : it goes by induction on  m. 

This property (1.4) may be called the extended linearity.   It can be written
in a simpler way if we use the so-called ‘matrix notations’ introduced in  § 1.2
for linear combinations of several vectors with several scalars.  Let us recall
those notations : 

X    (1.5)

With notations of  (1.5), a linear combination may be written as 

X T  =  X  (1.6)

It follows from  (1.4)  with  (1.6)  that 

X T ) X T ) . (1.4')

In (1.4') , X T ) represents the column vector of the values 

 

Using the alternative way to write a linear combination with the matrix notation
(1.4'), the property of extended linearity can be written as 

                         (1.7)   f (X X )

In this formula (1.7), the linear form’s values of  (1.5) appear as the components
of a row vector :  

X (1.8)
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In what follows, we will prefer the notational alternative (1.7). 

PROPOSITION 1.2.  If is a linear
morphism, is spanned by basis and is spanned
by  then the morphism uniquely determines an m-by-n
matrix  defined by  

                             (1.9)

Proof.  For any L Therefore
admits a unique linear expression in the basis of :   

(1.10)

More explicitly, the scalars are the coordinates of 
in basis The linear expression (1.10) can be equivalently written using a
matrix notation :  

 with  (1.11)

The m linear expressions of the form (1.11) can be written one under the other
resulting a system of equations (equalities) which is equivalent to the matrix
equation 

with  (1.12)

Therefore the expression (1.9) is proved and it uniquely defines the matrix of
the morphism in the (given) pair of bases. 

The matrix  is the matrix of the linear morphism / transformation in
the pair of bases As we shall see a little later, it essentially depends on
the two bases selected in the two spaces. Let us also mention that this
PROPOSITION 1.2 with formula (1.9) holds in the case when the two spaces are
finite-dimensional, only. 

The property (1.4) /  (1.7) is involved in formulating the analytic expression
of a morphism in a pair of bases of the spaces respectively. 

PROPOSITION 1.3. If the vector space U is spanned by the basis
 space  V  is spanned by basis  and the
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matrix of the linear morphism  in the pair of bases  is
then the image of a vector is   

                               (1.13)

Proof.  Formula (1.13) immediately follows from PROPOSITIONS 1.1 & 1.2 and
– more precisely – from the property of extended linearity (1.4') by replacing 

 X  ! A  and !  with  

Remarks 1.2. The proof is over, but we can give a more explicit (expanded)
version of this formula (1.13), recalling – from  § 1.1 – that 

       (1.14)

Formulas (1.13) and (1.14)  effectively give the analytical expression of the
image of a vector   x  through the morphism   f , in basis of space 

On another hand, PROPOSITION  1.3 may be considered as giving the converse
result to PROPOSITION 1.2 : indeed, if an m-by-n matrix is given and
the linear expression of a vector  x of the form 

 

is known, then is just the image of vector  x  through   f  if 
gives the connection between basis of and

basis of through   f  (see Eq. (1.9)). In other words, a linear transformation
from to uniquely determines a matrix in the pair of bases  of the
two spaces and – conversely – an  m-by-n matrix  plus a pair of bases 
uniquely determine a morphism However, this “equivalence”
should not be formally understood ; moreover, it is dependent on the bases in
the two spaces. 

Example 1.1. If U is a vector space of dimension 4 over the field ú and V  is
another real vector space with over the field ú, 
is a basis spanning U and  spans V , then the linear morphism 

with its matrix in the bases 
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then the image of the vector in basis  is 

               ~

In the case when the two spaces are are the most usual linear spaces
(in examples and applications), that is  –  for instance  – or

the matrix of such a morphism and the linear expression
of an image have to be adapted, from (1.9) and (1.13). Hence it comes to
linear transformations / morphisms of the form 

  or  (1.15)

It is natural and convenient to see how the formulas (1.9) and (1.13) look if the
two general bases are replaced by the standard bases in the two spaces: 

L L (1.16)
where  

(1.17)

With the standard bases in  (1.16), formula  (1.9)  becomes 

                            (1.18)

As regards the analytical expression of and Eq. (1.13)
turns to  

          (1.19)

If we denote it follows from  (1.19)  that 
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         (1.20)

A simple example illustrates this formula  (1.20). 

Example 1.2.  Let   be a linear morphism with its matrix in
the pairs of bases  given as 

(1.21)

From Eq. (1.20) and the data in (1.21) we get 

 ~

Two subsets associated to a linear morphism are defined next. 

Definition 1.2. Let  be two vector spaces over the same field  K (= ú
/ = ÷)  and a linear transformation (or linear morphism). Then
the kernel and the image (or range) of are defined by 

                (1.22)

           (1.23)


Before stating (and proving) a result concerning these two subsets of spaces
and respectively  let us remark that  that occurs in (1.22) is the zero

vector of the space   which is, in general, different from Next, let us
notice that the two subsets of (1.22) & (1.23) may be equivalently defined (or
written) as 

                          (1.22')
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             (1.23')

The notation used in (1.22') should be read as “the counterimage of” ; we
do not use  as a superscript since   should not necessarily be invertible,
and the notation is reserved for the inverse of the (bijective) mapping 
As regards notation it deserves almost no explanation : in equation
(1.23'), it denotes the image of a morphism defined on space and taking
values in  hence is simply the set of the images of all vectors in 
        The next result shows that these two subsets are more than simple subsets
of the respective spaces. 

PROPOSITION 1.4.  Let  be two vector spaces over the same field  K
(= ú / = ÷)  and a linear transformation (or linear morphism). 
Then  and  are subspaces of and   respectively. 
Proof.  To prove that  is a subspace of  it suffices to show that the
subset in (1.22) / (1.22') is closed under arbitrary linear combinations of (two)
vectors in it (see § 1.2 ). Indeed, by property in Definition 1.1',   

           

As regards it is also  closed under arbitrary linear combinations of (two)
vectors :   

   and

(1.23)

Although this is quite clear, let us notice that – on line (1.23) – we have made
use of the property that a linear combinations of (two) vectors in is also a
vector in namely This concludes the proof. 



Before introducing the notion of rank of a morphism, before seeing its
connections with the two subspaces of PROPOSITION 1.2 and before presenting
some special types of morphisms, let us see how the kernel and the image of a
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morphism can be practically found. We start with an example of a morphism
from an Euclidean space to another. 

Example 1.3.  Let  be a linear morphism with its matrix in the
pairs of bases  given as 

(1.24)

It is required to determine   and  for this morphism. 

    By Definition 1.2 - Eq. (1.22), adapted to our particular case, 

(1.25)

    (1.20) & (1.24)   |  (1.26)

    (1.24) & (1.26)   |  (1.27)

For an easier way to obtain the general solution of the equation in (1.25) it is
convenient to transpose the product in the right-hand side of  (1.27) : 

    (1.27) & (1.25)   | (1.28)

But (as a matrix) is just the identity matrix of order  4, hence it may be
omitted from (1.28) and the resulting matrix equation is equivalent to a
homogeneous system that can be solved by the Gaussian elimination method, as
in § 1.1 :   

                   (1.29)

Hence the vector in (1.29) is a general vector in .  

 The image is easier to be found. It follows from (1.26) - (1.27) that an
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arbitrary image vector  is given by the right-hand sides of these
equation. But the respective products yield a row vector. In order to obtain a
column vector in the product in the r.h.s. (right side) of (1.27) has to be
transposed, as we have did it for determining the kernel as the solution set of
system (1.28). Hence we arrive at the image given by 

   (1.30)

It follows from (1.30) that the subspace  is generated by the three
columns of the matrix in  (1.30).  Let us recall from  § 2.1  that to find a subspace
practically means to determine a basis spanning it.  It is therefore necessary to
check whether these three vector are linearly independent and – if not – to select
a basis as a subfamily thereof. As we proceeded in § 1.1 , we can easily obtain
this basis by a couple of transformations on that matrix.  It follows to obtain a
quasi-triangular equivalent matrix, as we did it for finding the rank of a matrix.
We may see that the second vector can be replaced by a simpler (or “shorter”)
vector by taking one third of its. 

(1.31)

It follows from (1.31) that the first two vectors in (1.30), or the first two columns
of the first matrix in the chain of  (1.31).  To conclude with this example, the two
required subspaces are spanned by the following bases : 

L  (1.32)

L  (1.33)

~

The example just closed involved a morphism between two Euclidean
spaces. But the problem of finding the kernel and the image of a morphism can
be approached and solved in a more general setting, when and
the two spaces are respectively spanned by (let us say) abstract bases,
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We are going to reformulate an exam subject from our web page,
http://math.etc.tuiasi.ro/ac/ , namely subject    from section  AG.1.  In the
statement of that subject, the morphism was of the form  but
we replace the two spaces by more general ones, keeping their respective
dimensions. 
Example 1.4. Le  be a linear morphism between the spaces 
with and  with they are assumed to be spanned by
the respective bases  and The morphism is
defined by its matrix in the pair of bases according to formula (1.9) :

(1.34)

In is required to find the coordinates  of a vector in , respectively the
coordinates  of a vector in 

The significance of the matrix in  (1.34)  is the following :  

(1.35)

The matrix equation (and then the corresponding homogeneous system) that
should be satisfied by the coordinates   follow from definition (1.22) of the
kernel and from formula  (1.13)  –  at page 126  – for the image  when the
morphism is given by its matrix 

(1.36)

In the rightmost side of (1.36) we have taken into account the obvious property
of the zero vector of having zero coordinates in any basis. It follows from this
Eq. (1.36), due to the uniqueness of the coordinates of a vector in any given
basis, the vector equation which we write and transpose : 

(1.37)

The homogeneous system  (1.37)  is solved on its matrix, that is the transpose
of the matrix in  (1.34) : 
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(1.38)

The explicit coordinates of a vector in  with the notations of § 1.1 , are

(1.39)

The result in (1.38-39) can be checked by determining the image of this vector,
from the data (matrix) in  (1.34)  and by formula  (1.13) : 

The image of the morphism with matrix (1.34) can be linearly expressed in
basis  using the explicit expressions of the vectors of earlier given in
(1.35) :  

          

  

                                       (1.40)

The notation we have used for writing expression (1.40) is obvious.  When the
coordinates of  independently vary over  ú , its coordinates

can take every real value. If this assertion is not so evident, we can
consider the non-homogeneous system 

(1.41)

This system  (1.41)  is not determined, in the sense that its solution depends on
a parameter (for instance But it is essential that it has solutions. 

Hence, any would be a vector with its real coordinates
a vector with exists such that 

 
~
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Definition 1.3. (Rank of a morphism).  Let  be two vector spaces
over the same field  K (= ú / = ÷)  and a linear transformation (or
linear morphism). Then the  rank of is defined as the rank of its matrix

 in any pair of bases and of space respectively 

Hence, if the matrix  is defined as in PROPOSITION 1.3 - Eq. (1.9), that
is  then 

                                  (1.42)

It would follow, from the defining Eq. (1.42), that this notion of rank would be
dependent on the two bases However, we shall see – a little later – 
how the change of bases affect the matrix of a morphism, but not its rank. 

There exists a connection between the rank of a morphism, its kernel and its
image. But let us firstly notice that 

M

                          (1.43)

Certainly, this inequality also holds when the two (finite-dimensional) vector
spaces and the morphism are considered on a more general field,  K  instead of 
ú .  

PROPOSITION 1.5.  Let  be two vector spaces over the same field  
K (= ú / = ÷)  and a linear transformation (or linear
morphism).  If and then 

                  &    (1.44)

Proof.  For the dimension of the kernel, let us see that the coordinates of a
vector in the kernel should satisfy the homogeneous system of the form (1.37),
that is  

(1.45)

The matrix of this system (1.45) is of size It is known from § 1.2 (and
from the highschool Algebra as well) that the solution set of a homogeneous
system of this size depends of parameters ; in terms of subspaces and
their dimensions, this means that  
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As regards the image, we should also go back to an earlier formula, Eq. (1.13)
at page 149 :  

(1.46)

Therefore  if and only 

(1.47)

But and thus we get, with Eq. (1.47), the equation 

(1.48)

The last matrix - vector equation in (1.48) represents a non-homogeneous
system. Assuming that a vector  is given, we have to establish
whether it is contained in .  By Definition 1.2 - Eqs.  (1.23) / (1.23')  at
pages 128 / 129, we have to check the existence of (at last) an satisfying (1.47)
- (1.48).  We have already noticed that the size of is The system
(1.48) has solutions  }|  a condition of consistency is satisfied. By Rouché’s
Theorem, (see § 1.2 ) we should have 

(1.49)

If  (1.49)  holds, this means that and  
equations of the system (1.48) may be removed / deleted. The system is
consistent and (the vectors in) its solution set will depend on
parameters (the secondary unknowns). The vectors in will be counter-images
of 

But the consistency of the system  (1.48)  is equivalent to the condition that its
vector of free terms belongs to the (sub)space generated by the columns of its
coefficient matrix. See the definition of this subspace for a general matrix

denoted in  § 1.3 - Eq. (3.21) at page 66, and the just mentioned
condition for system’s consistency as PROPOSITION 2.10 - Eq. (2.35) at page 46
in  § 1.2 of  ƒA. C., 2014„ . We slightly change this notation to and
we arrive to the equivalence 

(1.50)



136 CH. 4   LINEAR MORPHISMS 

But the rank of the matrix in  (1.50) is just   r  and therefore (a minimum number
of) only  r  columns of generate the vectors in  and thus the second
equality in  (1.44)  is also proved.   

Remarks 1.2.  Our proof for Eq. (1.44-2) essentially consists of Eqs. (1.47) +
(1.48) + (1.49). However, we have offered more details and explanations.  Other
proofs, involving the bases spanning and can be found in textbooks
of LINEAR ALGEBRA like [E. Sernesi, 1993] and [C. Radu, 1996].  In fact, the proofs
in these two references are essentially the same.  We presented them, with
appropriate changes of notations, in  ƒA. C., 2014„ (that is, the extended version
of our textbook of 1999). 

We saw, in Examples 1.3 & 1.4, how the kernel and the image of a linear
morphism can be found, starting from the matrix of such a mapping. But, in
very many applications (exercises) where these two subspaces are required to
be found, the morphisms of the form are given by the image
of the vector  written as the (column) vector  whose
components are linear forms in the components of  X :  If the
morphism is given this way, its kernel and image can be very easily found. The
kernel is just the solution subspace of the homogeneous system

 while a basis spanning is described below. 
This informal description becomes more explicit if we denote by M  the

matrix of the homogeneous system, just mentioned. Thus 

(1.51)

If we compare this equation with Eqs. (1.19 - 20) at pages 127 / 128, it clearly
follows that our matrix  of (1.51) is just the transpose of the matrix

there involved : 

(1.52)

Hence is the solution set  S  of the homogeneous system (1.51) whose
matrix is 

 M (1.53)
With this structure in (1.53), the homogeneous system (1.51) can be – more
explicitly – written as 

(1.51')

As regards  a basis  B  spanning it can be rather easily found by selecting
r  linearly independent columns among the columns of  (1.53). The method we
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presented in  § 1.2 can be conveniently used :  must be brought to a quasi-
triangular form for identifying these r independent columns, while the same
Gaussian elimination technique can be applied until a quasi-diagonal form of
the matrix  is obtained for getting The next example illustrates
this descriptive presentation. 

Example 1.5.  Let  and  be the two linear morphisms given below : 

(1.54)

  (1.55)

It is required to find their kernels and images. 

It follows from (1.54) that  

    (1.56)

The matrix  also comes from (1.54), but we give it a subscript : 

 (1.57)

In fact, the homogeneous system (1.56) was too simple for needing this matrix
for its solution ; but we have written it for illustrating (1.52). It is also clear that
the first two columns of  are linearly independent and they form the basis
for   in fact, this basis is just the standard basis  of  
Hence  Equations  (1.44)  are trivially satisfied since 

(1.56)   |   

The matrix of this simple morphism in the pair of standard bases is

(1.58)

For the second morphism in  (1.55)  we proceed analogously. 



138 CH. 4   LINEAR MORPHISMS 

    (1.65)   |   (1.59)

The kernel is obtained from (1.55). The H-system is 

(1.60)

The three columns of the matrix in (1.59) are linearly independent since the
determinant formed with its first 3 rows is   is spanned by
these three column vectors, hence a vector in the image is of the form (taking 

(1.61)

The three column vectors in  (1.61)  form a basis for the image of  g .  But the
same result can be obtained, in a simpler way, by expanding the vector in the
r.h.s. of  (1.55) :  

    (1.60) &  (1.61)  |   

Equations  (1.44) are thus satisfied.  Let us close this example with the remark
that the images of  cover the space where it takes values while the images of

 do not cover    ~

Properties & Classification of Linear Morphisms 

A series of properties of the linear morphisms are going to be defined and
studied (characterized). In fact, they are not specific to the mappings  between
vector spaces. They are met and studied in the highschool ALGEBRA, in
connection with algebraic structures and mappings between them like the
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homomorphisms, isomorphisms, etc. They are also met in MATHEMATICAL

ANALYSIS - CALCULUS. 

Definition 1.4. (Properties of morphisms).  Let  be two vector spaces
over the same field  K (= ú / = ÷) and a linear transformation (or
linear morphism).    is said to be  injective  if , 

, or (1.62)

(1.63)

The morphism  is said to be surjective (or onto ) if   

(1.64)

A linear transformation / morphism   is bijective if it is both
injective and surjective. 

Remarks  1.3.  It is clear that definitions (1.62) & (1.63) for the injectivity
of a morphism are equivalent. For instance, if we take some  but assume
that it would follow by (1.63)  that Hence  (1.63) |
(1.62) and the converse implication holds, too. 
  Property (1.62) tells that an injective morphism takes different values for
distinct arguments, while (1.63) states that an injective morphism takes the
same value on two vectors only if the two arguments coincide. 
 A surjective morphism has an image (or range) that covers the whole space
where it takes values : any vector  has a nonempty counterimage.  This
means that  

As a matter of terminology, a bijective morphism is called an isomorphism,
and two vector spaces  such that there exists an isomorphism from one
to the other are said to be isomorphic. In such a case it can be used the notation 

   or     

These two properties (that can be verified or not by a certain morphism)
are connected with the other two notions, the kernel and the image. These
connections are stated in  
PROPOSITION 1.6.  Let  be two vector spaces over the same field  

K (= ú / = ÷)  and a linear transformation (or linear
morphism). 

    Î  is injective  (1.65)

    Ï  is an isomorphism  (1.66)
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Proof.   Î Let us assume that  is an injective morphism, that is both
properties  (1.61) & (1.62) are satisfied ; in fact, it suffices to assume that one of
them holds since they are equivalent.  Let us also suppose that  

(1.67)
Then (1.67)  |   For some fixed   we have   

(1.68)

But the equation (1.68) contradicts the injectivity of by (1.62) : different
vectors would have the same image through The converse implication

 can be proved as follows.  Let us consider two vectors  such
that  But this latter equation plus
the defining property  ( LIN )  of any morphism leads to  

  Ï   Immediately follows from Definition 1.4 and  Î.  We have introduced this
characterization in the statement  taking into account the importance of this type
of morphisms and their characterization in terms of kernel and image. 



A couple of other properties of morphisms to be introduced next need
another preliminary definition. 
Definition 1.5. (Special morphisms, composite morphisms). Let

be two vector spaces over the same field  K (= ú / = ÷). The identical
morphisms on each of the two spaces are respectively defined by : 

(1.69)

(1.70)

The zero morphism is defined by 

(1.71)

Given two morphisms the composite
morphism of  with  is defined by 

(1.72)


Remarks 1.5. As a matter of notation, the identical morphisms of (1.79)
and (1.70) are denoted, in many textbooks, as  respectively  In fact,
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the definitions in  (1.69) and (1.70) are the same, but the spaces on which each
of them is defined differ.  Obviously,  The same
equations hold for 
   The zero morphism of  (1.71)  is a constant mapping : it takes a unique
value on any argument : 

 

It can be easily checked that this degenerate (or trivial) morphism satisfies the
definition of a linear morphism,  Def. 1.1  at page 122. 

 The operation of composing two morphisms, by (1.72), is the usual
operation of composing two mappings or functions. The set of all linear
morphisms between two spaces is denoted as With this
notation,  (1.72)  can be rewritten as follows : for any 

 

Let us check that the composite mapping thus defined is a linear morphism, too. 
Denote  

     (1.73)

and let us check that  

 

 

The matrix of a composite morphism, in a triple of bases A , B , C  with 

 L L L  

is obtained from the two matrices  

(1.74)

It follows from  (1.74)  that 

(1.75)
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    (1.73) & (1.75)  |  

(1.76)

  (1.76)   |     

Therefore, we have effectively proved the next 

PROPOSITION 1.7.  Let be three  finitely generated vector spaces 
over the same field  K (= ú / = ÷)  and two linear
transformations (or linear morphisms).  If  A , B , C  are three bases respectively
spanning the spaces U, V, W  and the two matrices of the morphisms   f   &  g 
are the ones in  (1.74), then the composite mapping  defined by (1.72)
is also a linear morphism from  U  to  W  and its matrix in the pair of bases

 is   

       (1.77)

Proof. As we have just mentioned, the proof was already presented in
equations  (1.72) , . . . , (1.77). Let us only see that  



Example 1.6.  Let  and  be the two linear morphisms  

with  The two morphisms are given, in the
pairs of bases   and   , by their respective matrices 

(1.78)

It is required to calculate the matrix  of the composite morphism
 and to determine the linear expression  of the vector 

  (1.79)

in the basis  C  of  W  using this matrix and – also – the intermediate expression
of  in basis  B  of  V.   
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Eq. (1.77) with the matrices in  (1.78)  leads to  

(1.80)

If we denote the coordinates of   u in the basis C  of  W 
then, with the coordinates  of  (1.79) and the matrix of (1.80) we get 

(1.81)

 (1.82)

The image  in basis  B   can be similarly obtained : 

    (1.83)

Next, the image  in basis  C  is 

    

       (1.84)

Therefore, the expressions in (1.82) and (1.84) coincide and the formulas in
PROPOSITION 1.7 have been illustrated / verified on this example.   ~

PROPOSITION 1.8.   If  

 A (1.95)

is a linearly independent / dependent family of vectors in U  and  f (A)  is its
image through the bijective (or only injective) morphism  f  then it also
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independent / dependent. 
Proof.  The image through  f  of the family in  (1.95)  is  

f (A   (1.86)

Let us assume that the family in (1.95) is linearly independent. Hence  

(1.87)

If the linear morphism  f  is applied to the first equation in (1.87), that is to the
zero linear combination, it follows by the extended linearity of  f – see
PROPOSITION 1.1 in this section –  that 

 (1.88)

Let us assume that the last equation in (1.98) also holds for some 
 this would imply that the vector B A ) would be

linearly expressible in terms of the other vectors of  B :  

(1.89)

The injectivity of  f  (and so more its bijectivity) ensure that every B
have unique counter-images A , respectively. Thus,
expression (1.99) + (1.96)  imply 

(1.90)

But (1.90) represents a linear dependence relation among the vectors of the
family (since, in Eq. (1.90), what contradicts its assumed
independence, formally characterized by (1.87).  This proof can be conversely
restated for showing that the independence / dependence of the family  B
implies the same relation for the family  A  A B ).   

As a matter of terminology, the following equivalent (synonim) terms are
used for naming the types of linear morphisms we have just discussed : 

f    is  injective : f     is a    monomorphism ; 
f    is  surjective : f     is an  epimorphism ; 
f    is  bijective : f     is an  isomorphism .  

Definition 1.6. (The inverse of a morphism). Let be two vector
spaces over the same field  K and let be two linear
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morphisms. The morphism   g   is the inverse of   f   iff  

(1.91)

The usual notation for the inverse of the morphism  f  is  Hence
 and the definition of  (1.101)  becomes  

(1.91')


THEOREM 1.1.  The following properties of linear morphisms and
isomorphisms hold : 

   â has the natural structure of a vector space.  

   ã  If   f   is an isomorphism then  is an isomorphism, too. 

   ä  If   f   is an isomorphism and   is its inverse then  

         (1.92)

   å   If are finite dimensional spaces over  K  then they are 
        isomorphic  }|   

   æ   If   then   is isomorphic to  

   ç   If are inverse isomorphisms, that is

  and if   are two bases of the spaces  with 
  then  

  (1.93)

Note.  The rather long and technical proof of this Theorem, with its 6 points,
is not given here. It can be found in the extended textbook in  ƒA. C., 2014„,  § 3.1
 (pages 171 - 174). 

Comments.  A couple of remarks on this Theorem could be appropriate.  Two
vector spaces that are isomorphic are - for algebraic purposes - the same, as
stated in [G. Strang, 1988  - page 200], even when they are practically different.
They match completely : linearly independent sets correspond to linearly
independent sets, and a basis in one corresponds to a basis in the other. Their
dimensions coincide. As regards part  æ  in the previous Theorem, the
isomorphism of any n-dimensional  space  to   or to the “standard” real
space  implies that any definition or result, stated (and proved) in can
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pe transferred to the space with appropriate formulations and notations. 

Example 1.7.  We gave in  § 1.1 , as an example of a vector space, the set
(space) of polynomials of order  n  with real coefficients,  We there
remarked that such a polynomial is completely and uniquely determined by its 

 coefficients   This entails the one-to-one correspondence 

     

 (1.94)
                                        

This is a typical case of isomorphism. The correspondence in (1.94) is clearly
bijective, and it as also linear. The linear operations with polynomials were
presented in  Example 1.9 of  § 1.1, Eqs. (1.31) & (1.32).  A standard or
canonical basis spanning the space  is offered by the  
elementary polynomials  ~

The Matrix of a Linear Morphism after a Change of Bases 

Let be a linear  linear morphism.  If and
the two vector spaces are respectively spanned by the bases 

 and  

the matrix  in this pair is uniquely determined by the formula (1.9) in
PROPOSITION 1.2 (page 125). We recall that formula (giving it a new number):

  (1.95)

If the bases are changed for a pair of “new” bases
matrix in this pair of bases will naturally change. We met this situation in

the cases of linear forms (LFs), bilinear forms (BLFs), in Chapter 3,  §§ 3.1 &
3.2. The way the matrix changes when is presented
in 

PROPOSITION 1.12. (Changing the bases and matrix of an LM).  If 

    

is a linear morphism with its matrix defined by Eq. (1.95) in the pair of
bases of the spaces (respectively) and if  
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     by  and  by  (1.96)

then the coefficient matrix of   f   in the new bases  is given by 

                        (1.97)

Proof.  As in the case of the BLFs, the proof of the formula (1.97) follows from 
the transformation equations of the two bases, that is (1.20) in  § 1.1 , and from
the property of extended linearity of morphism   f  applied (simultaneously) to
several linear combinations of vectors, in this case the linear expressions of the
“new” vectors of bases  in terms of the vectors of initial bases Our
“matrix notations” are very useful in presenting this proof. 

Let us recall that the transformation formulas in (1.96) can be more
explicitly written with the transformation matrices  written as stacks of
rows.  Taking into account the dimensions of the spaces  we have 

M  and  M (1.98)

The matrices in (1.96)  are nonsingular. We can write them as column vectors
whose compunents are rows in   respectively :   

                    

    (1.96-1)  | (1.99)

    (1.96-2)  | (1.100)

For instance, the i- th vector of basis is linearly expressed in basis  A  as
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(1.101)

If the linear morphism   f   is applied to Eq. (1.99), Eq. (1.7) with  X T  
and    | 

 (1.102)

The m equations of the form (1.102) can be written one under the other resulting
in 

(1.103)

Next, we have to use expression  (1.95)  of 

(1.104)

But it follows from the second equation in  (1.96)  that 

(1.105)

The formula connecting the new bases with the matrix of  f  comes
from  (1.95)  with bars on the bases : 

(1.106)

Equations (1.104) & (1.105), under their matrix forms, offer the m images
through   f   of the vectors of in the basis According to the uniqueness
of the coordinates (of one or several vectors) in a basis, 

    (1.143) &  (1.144)  (1.197) 

The proof is thus complete. 

Example 1.7.  Let us consider two vector spaces  (over the same field 
ú) with , respectively spanned by their bases  A , B  – 

 

–  and a morphism with its matrix in bases  (A , B )  

(1.107)

These two bases are changed for  with the transformation matrices
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(1.108)

It is required to write the matrix of   f   in the pair of the new bases 
Next, it is required to find the image through   f   of the vector 

(1.109)
using both matrices 

In order to apply the formula of matrix change (1.197) to the data in (1.107)
- (1.108), the inverse of the matrix  T  is needed. The most convenient way to
obtain it is the one based upon transformations (Gaussian elimination),
presented in  § 1.2. We recall it, with  T  instead of  A   : 

(1.110)

    

    

    

     



150 CH. 4   LINEAR MORPHISMS 

       (1.111)

    (1.97) , (1.107)  &  (1.101)  |  

    

   

The image of the vector  x  in (1.109) follows from the formula (1.13) at page
126. With the matrix in (1.107) and the coordinates resulting from expression
(1.147), that is  , we obtain  

(1.112)

The coordinates of  x  in the transformed basis of space U  can be
determined by formula (1.78) in  § 2.1, with  

(1.113)

The column vector of the “new” coordinates in (1.113) can be effectively
obtained as the solution to a nonhomogeneous system of augmented matrix 

 

 .

Hence we get  
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(1.114)

The image of  x , with the transformed bases, is 

     

                       (1.115)

Checking the coordinates is possible if we replace the

vectors of   by their expressions in the initial basis  of

space in expression (1.115), using the transformation matrix  of (1.108): 

Hence, the linear expression of the image  in the initial basis
(1.109), has been retrieved.  ~

*    *    *    *
Before continuing with other definitions and results on the linear

transformations, let us remark that the morphisms from  to  (or
from  to   ) are usually given, mainly for applications, by the image 

(1.116)

where the components in the rightmost side of (1.116) are linear forms. The
equation (1.18) at page 127 gave the definition of the matrix of a morphism 

 in the pair of the standard bases of these spaces.  Let us recall
that formula, also valid for a possibly more general morphism of the form  

It is the (matrix of the) morphism that has to be brought to a simpler form – this
will be the case with diagonalization of endomorphisms, to be presented in
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Section 4.3 – the standard bases should be changed for other bases. We
approached this issue in connection with the BLFs, in  § 3.2 .  If the standard
bases are changed to other (more general) bases,  the
respective transformation matrices are 

  with  (1.118)

These transformation matrices can be taken to the previous formula (1.97) at
page 147 giving the matrix of a morphism after a change of bases. The necessary
replacings are 

   (1.119)

From  (1.97)  with  (1.118)  we get 

             (1.120)

Example 1.8. The morphism  is given by 

(1.121)

It is required to write the matrix of this morphism in the pair of bases 

with  

(1.122)

It is also required to find the image of   as a (column) vector in 
 and by its linear expression in basis  of  (1.122). 

    (1.121)  |    (1.123)

    (1.122)  |    (1.124)
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In order to use formula (1.120), the matrix  has to be inverted. Since 
 it is convenient to apply the formula  

    (1.122-1) , (1.123) , (1.122-2)  | 

    

     (1.125)

From  (1.123)  we get the image of  : 

(1.126)

In order to find this image using the matrix of (1.125), the coordinates   of 
in basis  have to be found. They are easily get from a nonhomogeneous
system (under its matrix form), as presented in  § 1.1 and  § 1.2 :  

    (1.127)

The image with bases   and formula (1.13) at page 126, is
obtained, with the matrix in  (1.125), as 

(1.128)

This expression in (1.128) can be checked by replacing  from
(1.122) : 
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Thus, the value of  (1.128)  is retrieved and the example is complete.  ~

Example 1.9. A mapping  M  is defined by  

 M  (1.129)

Check that this is a linear morphism but it is not injective. Is it surjective ? 

We saw in  § 2.1 that the set of matrices of any size  over an arbitrary
field  F  form a vector space over that field. This property clearly holds for the
particular case of the square matrices, too.  The mapping  applied to a
linear combination of two matrices  gives 

  for  (1.130)

The mapping is obviously surjective.  For any   there
exists at least one square matrix of order  n  whose image through  is just
this  X ; for instance, the simplest matrix   is just the diagonal
matrix  

The mapping is not injective since two distinct matrices 

 M  with  

having just the same entries on their main diagonals, may have different entries
in their lower and upper triangles :  ~

The next result regards the composite morphisms. Therefore, the definition
of   (Def 1.5 at page 140, Eq. (1.72)) is going to be involved and we
recall it (under a new number) : 

(1.131)

THEOREM 1.2. (Properties of composite morphisms) Let the composite
of the two linear morphisms  be  
defined by  (1.131). Then : 
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      surjective (epimorphism)   |    surjective ;  

     injective   (monomorphism)  |    injective ;  

     bijective   (isomorphism)       |   bijective ;  

      |   bijective and  

Proofs.  These four assertions offer properties of the “factor” morphisms 
resulting from a specific property of the composite morphism 

 Obviously, the possible properties of a linear morphism have to be
reviewed from Def. 1.4  at page 139, Eqs. (1.62) - (1.63). Before starting the
proof, we offer a (possibly useful) diagram representing the three mappings
(morphisms). 

   If  is surjective, this means (by Def. 1.4, Eq. (1.73)) that 

  (1.132)

Since   (1.132)  means that  

 is surjective. 

 If  is injective, it follows by  Def. 1.4, Eq. (1.72) that  

or (1.133)

  (1.134)

We can use these equivalent definitions, but is seems more convenient to use the

                           

                                     

                                

                                      

 Fig. 1.1 The composite of two morphisms
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characterization in terms of the kernel(s) - PROPOSITION 1.6 at page 139, Eq.
(1.75).  Let us denote the three zero vectors of the spaces   as 

We must prove that   if  

(1.135)
(1.136)

Let us assume that the implication from  (1.135) to (1.136) would not hold. This
would mean that 

(1.137)
But any morphism maps the zero vector onto the zero vector (of the “next”
space), hence  (1.137)  |  

        

what contradicts the injectivity of ;  thus  (1.136)  holds. 

Let us also see the proof of  by using (1.134).  From  injective it
follows that  

(1.138)

If we take but suppose that then, by the
other definition of injectivity for it would follow that 

     

what contradicts the hypothesis in  (1.138).  

   If  is bijective, it is both surjective and injective.  In view of
 it follows that is surjective and  is injective.  Let us show that 

is injective, too.  If   then 

(1.139)

for some  But  (1.139)  | since  is bijective. 
Hence of (1.175) cannot be and is
injective.  It remains to verify that and  is surjective.  Let us assume that  
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since the two morphisms  cannot be composed through this  v .  Thus, 
v  could not be surjective !  Thus both morphisms are surjective and
injective, hence bijective. 

In the terminology at page 144, 

      if  is a monomorphism then  is a monomorphism ; 
 if  is an epimorphism then   is an epimorphism ; 

if  is an isomorphism then both are isomorphisms. 

 This property follows from the pervious one.  If 

     

then  are bijective since the identical morphism on any space is bijective
(an isomorphism) – the most trivial isomorphism.  Hence each of them has an
inverse. It remains to show that  Let us denote by  another possible
inverse of   By Definition 1.6 at page 170, Eqs. (1.101) - (1.101'), and also by
THEOREM 1.1 - ä (Eq. (1.102) , 

(1.176)

If we consider an arbitrary vector (or point)  and its image 
from the equation  in the statement plus  (1.176) we have 

   (1.177)

Therefore, two morphisms whose composite - or product - is the identity
morphism  are both isomorphisms and thus invertible, the
inverse of    is    and it is unique. 

Comments. In the proofs of all the four points  thru  of this
THEOREM, nowhere was used the property of to be linear morphisms
between (pairs among) the three vector spaces. Thus, the four properties would
hold for more general maps from a set to another set. However, the zero vectors
and the kernels have been involved in some of the proofs, and we stated and
proved this four fold result dedicated to linear morphisms.   
    The second chapter entitled LINEAR MAPS,  in the monograph Functional
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Analysis [P. Lax, 2002], includes two additional properties that can complete the
points  thru  in our THEOREM 1.2. We present them under the next
numbers, with slight changes in Professor Peter D. Lax’s notations [Functional
Analysis, John Wiley & Sons, Inc., 2002] at page 9. 

  If the morphisms  are both invertible, so
is their product,  and 

(1.178)

  If    is invertible, then 

 (1.179)
Let us see that these two equations were stated (and proved) in our TH. 1.2,

taking into account the characterizations of injective and bijective
linear morphisms, earlier presented in our PROPOSITION 1.6 -  â  &  ã at page
144.   We defined the surjective morphisms in Def. 1.4 at page 139. 

The author P. Lax  adds the following  Remark : When   are
finite dimensional, then the invertibility of the product  in our
notations) implies that   and  separately are invertible. This is not so in the
infinite-dimensional case ; take, for instance, the space of infinite sequences 

and define  and   to be the right and left shifts :  

  

Clearly  is the identity map, but neither  nor  are invertible ; nor is the
identity.  

  Part   in THEOREM 1.2. is the reciprocal (converse implication) to the
immediate property stated as part  ä  in THEOREM 1.1 at page 145. 

4-A     APPLICATIONS TO LINEAR MORPHISMS 
§ 4.1-A   APPLICATIONS TO LINEAR TRANSFORMATIONS 
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Show that the following mappings are linear morphisms and 
write their matrices in the standard bases of the spaces they are 
defined on. 

     

Show that the following mappings are linear morphisms, find 
their kernels and images and establish which of them are 
isomorphisms.  

  
 

 

  

Determine the composite morphisms  and  (or) 
and check whether they are linear morphisms, where: 

   

   

Write the matrices of  in the respective standard bases and
calculate the matrices of the composite morphisms ; check the formula (1.77) in
PROPOSITION 1.7 - page 142 for the matrices of the composite morphisms. 
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Given the morphism 

      
and the (linearly independent) vectors   

  

check for independence / dependence their images  
Find the counter-images (vectors or sets of vectors) 

 Can the subscript  be raised as a superscript ? 

The morphism  is given by its matrix in the
pair of standard bases   

Find its matrix   in the pair of bases 

Then find (a basis) spanning   and     

Check whether some linear morphism can 
map the vectors

  onto   

 (respectively). 

Find a basis spanning the subspace  of the solutions to the 
homogeneous system whose matrix is 

Then find (a basis spanning) the image  through the 
morphism given by  
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Let  be linear morphisms. 
Prove that 

 

Let  be two linear morphisms 
with the property (the zero morphism). Show that 

     If   is surjective then 

     if   is injective  then  

    

Note : The same symbol  O  is used for the zero morphism in this statement 
although three different zero morphisms are here involved. Property  is not
directly connected with &  since should be checked to be
a necessary and sufficient condition for the inclusion. 

Let   be a basis in  and 
 a  basis in The linear morphism is defined 
by  

 
 Write the matrix of this morphism in the pair of bases 

 write the image of a vector  as a linear expression in 
basis  B ;  

find the counter-image 
determine

It is considered the mapping F  F defined 
by 

Show that  T  is a linear morphism and check whether it is an 
isomorphism. 
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 There are considered two linear morphisms, 
 

with the two spaces respectively spanned by the bases 
 and   The two morphisms are 

differently defined, as follows : 

  

It is required to : 

 Find the expression of in the basis  B ;  
 show that  f  is surjective ;    show that   g  is injective. 

 Write the matrix  of the composite morphism 

 

                                                                                


