
§ 4.3  LINEAR OPERATORS: DIAGONALIZATION AND NORMAL FORMS 

The notions and results to be presented in this last section on the operators of a vector space are of

a special interest from both theoretical and practical points of view. They are essential for other fields

of MATHEMATICS like the Differential Equations and Systems, but they are  also met in the Theoretical

Mechanics, in  Physics, Theory of  Structures – hence in the analysis and design of CIVIL ENGINEERING

(and other industrial) structures and facilities. 

Eigenvalues and Eigenvectors of Endomorphisms / Operators  

The eigenvalues – eigenvectors associated to a square matrix were presented in § 2.3 (see Definition

3.8 - page 103, with the subsequent results), as essential concepts for the diagonalization of quadratic

forms by orthogonal transformations. However, we are going to define them again in the context

of linear operators, under more general conditions.  

Definition  3.1. Let be an endomorphism of the vector space over the  field  K (=

ú / = ÷). A scalar K  is said to be an  eigenvalue of and an (associated) eigenvector

of  if and 

                                                      (3.1)

More explicitly, is an eigenvector (associated to the eigenvalue if its image

through is proportional to itself under the multiplication by scalars – the second operation in the

definition of a vector (or linear) space :  is a multiple of  �

The way an eigenvector is associated to an eigenvalue is not quite clear so far ; it will be stated

precisely in the results that follow.  Let us now remark that several eigenvectors correspond to the

same eigenvalue all of them being (naturally) characterized by Eq. (3.1). This property is stated

in 

PROPOSITION 3.1.  Let be an endomorphism of the vector space and an

eigenvalue and an eigenvector of Then is also an eigenvector

corresponding to 

Proof.  Let us first remark that 

  (3.2)

that is  this follows from some consequences of the Definition 1.1 of a vector space, in  §

1.1 .  The property that  satisfies Eq. (3.1) is immediate : 

  (3.3)

Thus  (3.3)  with  (3.2)  imply the assertion in the statement.   �

This PROPOSITION naturally leads to the definition of a whole set of eigenvector corresponding

to the same eigenvalue 

197
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(3.4)

It obviously follows from (3.4) that  A slightly larger (sub)set may also be associated

to an eigenvalue 

                         (3.5)

The difference between (3.4) and (3.5) is obvious : since the scalars  that occur in (3.5) are not

required to be nonzero and it follows that  and, moreover, 

  or   (3.6)

Some properties of the eigenvalues & eigenvectors are presented in the result that follows, but

another notion should be previously introduced by 

Definition  3.2. Let be a linear operator and a subset (or subspace) of

Then  is said to be invariant under  if   that is 

(3.7)

In other words, a subset or a subspace of space  is invariant with respect to (or under) the

operator  if  does not take any vector outside of We can now state 

PROPOSITION 3.2. Let be a linear endomorphism of space and let

be an eigenvalue and an eigenvector of Then 

  (defined by (3.5)) is a subspace of and it is invariant under 

   If   are eigenvalues of   then 

     (3.8)

Proof.  Let us take and  two arbitrary scalars. It follows from

definition  (3.5) of that  there exist two scalars  such that 

(3.9)

    (3.8)  |   (3.10)

But we have, inside of (3.9), a scalar what shows that  is

closed under arbitrary linear combinations of (two) vectors, hence it is a subspace If we now

consider a vector it follows from (3.5) that for some  

Therefore 

in view of the same definition (3.5). Thus is entirely proved. 
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   Let us assume that any of the equalities in  (2.8)  does not hold. In fact, they are equivalent

in view of (3.6). Hence it would exist a nonzero vector 

or (3.11)

But it follows from definitions (3.4) / (3.5) that  is a vector corresponding to both eigenvalues 

If these two equations are side-by-side subtracted we get 

(3.12)

This equation in (3.12) follows from and from consequence of Definition 1.1 in  § 2.1. 

Clearly,  (3.12)  |  what contradicts the hypothesis in This concludes the proof. 

�

Remark  3.1.  It follows from PROPOSITIONS 3.1 & 3.2 that any eigenvalue of an operator is

associated with several eigenvectors, or - more exactly - several eigenvectors correspond to a single

eigenvalue. In fact, the whole set of eigenvectors corresponds to  Instead, an eigenvector

cannot correspond to two (or more)  distinct eigenvalues.  This follows from part in the

previous PROPOSITION, but it can also be directly proved. Indeed, if we suppose that  

and also  it easily follows (through side-by-side subtraction) that 

as in (3.12), since  like any eigen-

vector.  

The number of eigenvectors corresponding to the same eigenvalue is infinite ; it results from

(3.4) that there exist at least “as many” eigenvectors in as scalars in It will be seen

that not all of them are “relevant” ; in fact, a (finite) basis of eigenvectors spanning or

 will entirely determine these sets. 

Another property concerning the distinct eigenvalues of a linear endomorphism (and

corresponding eigenvectors) is stated in 

PROPOSITION 3.3. Let be a linear endomorphism of space with distinct

eigenvalues Then any eigenvectors respectively corresponding to these

eigenvalues are linearly independent. 

Proof. Before writing down the eigenvectors, let us notice that they are necessarily distinct, in

view of the previous PROPOSITION 3.2. Certainly, for each eigenvalue  infinitely

many vectors correspond to it, but we consider (or choose) only one of them. The diagram below

illustrates this correspondence. 

   with  (3.13)
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Certainly, the eigenvalues on the first line in  (3.13)  satisfy the condition in the statement :

(3.14)

We must prove the linear independence of the vectors in (3.13), what is equivalent to the

implication 

(3.15)

The proof proceeds by induction with respect to Let us denote the property to be proved as

obviously holds, in view of Def. 3.1. If is an

eigenvector corresponding to the eigenvalue we have  

according to consequence of  Definition 1.1 of  § 1.1 .  Hence is a linearly independent

vector  –  the simplest case of linear independence.  Let us now assume that holds and try

to show that holds, too. Certainly, hypotheses (3.13) and (3.14) should be extended to

 pairs of eigenvalues – eigenvectors :   should be replaced by  in (3.13) , (3.14) and

in  (3.15) – the property to be proved – too.  The equation involved in (3.15), for vectors, is 

(3.16)

Next, the operator is applied to Eq.  (3.16) and its extended linearity (see § 3.2 ) is used giving 

(3.17)

But are eigenvectors corresponding to the respective eigenvalues. Hence

and  (3.17)  becomes  

(3.18)

But  in the last term of  (3.18)  can be expressed in terms of the other  terms from Eq.

(3.16) :  

(3.19)

  Eqs.  (3.18) & (3.19)  | . . . 

(3.20)

The linear independence of the vectors that occur in  (3.20), assumed by implies  

(3.21)

But condition  (3.14), extended to the distinct eigenvalues implies that 
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since as any eigenvector. Hence and the  eigen-

vectors are thus linearly independent, holds and the Proposition is proved. 

�

The definitions and results, so far presented, have been rather theoretical. But it is also
important to see how the eigenvalues and eigenvectors of an operator can be effectively found. It is

necessary to rewrite definition (3.1) of an eigenvalue with a corresponding eigenvector under

an equivalent form. Let us recall (from § 4.1 & § 4.2 ) that the identity endomorphism of a vector
space  is defined by 

(3.22)

In other words, the identity map(ping)  or  leaves unchanged any vector in It is

obvious that the matrix of in any basis of a finitely generated space  (with equals

the identity (or unit) matrix  With these preliminaries, Eq. (3.1) can be equivalently rewritten

as 

(3.23)

It follows, from  (3.23), that any eigenvector  corresponding to the eigenvalue is taken to the

zero vector  by the operator that is 

(3.24)

The last membership relation in  (3.24)  allows to conclude that 

                        (3.25)

Thus, the kernel of the operator  contains all the eigenvectors corresponding to the

eigenvalue On another hand, it is easy to see that the matrix of operator  in any

basis  of  is 

(3.26)

If we now look for the coordinates of an eigenvector  corresponding to the eigen-

value in basis it follows from the previous remarks and from PROPOSITION 2.3 of   § 4.2 that 

its coordinates  will have to satisfy the matrix equation 

(3.27)

The zero vector is the vector of coordinates of  in any basis of space  The

matrix equation (3.26) can be equivalently rewritten (by a simple transposition of the matrix and

row vectors there involved) as 

                                (3.27')

This last matrix equation represents, in fact, a homogeneous system whose matrix is  But
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let us recall that we look for the coordinates of a nonzero (eigen)vector. Hence, only the notrivial

solution of the H-system ( }| (3.27)) are acceptable. As known (and stated in § 1.2 ), the necessary

(and sufficient) condition for a homogeneous system to admit nontrivial solutions is that the rank

of its matrix be less than the number of its unknowns (= the number columns of its matrix).  And this

latter condition is equivalent to the singularity of this square matrix, that is the determinant of the

system should be We have thus arrived to a necessary condition for the coordinates of

a vector  x  in basis of space to be an eigenvector corresponding to the eigenvalue  Let us

state it as 

PROPOSITION 3.4. Let be a linear endomorphism of space with its matrix in

basis of space then the coordinates of any eigenvector  corresponding to the

eigenvalue  should satisfy the homogeneous system  (3.27)  with the necessary condition  

 (3.28)

But this condition (3.28) is also a condition on any eigenvalue  of Therefore any eigenvalue 

of the operator is obliged to satisfy Eq. (3.28), which is - in fact - an algebraic equation of

order over the field This follows from the fact that 

                                        (3.29)

is a polynomial of order with its coefficients in the field This is called the

characteristic polynomial of the operator Obviously, its coefficients are products of entries of

matrix and it is therefore basis-dependent. However, it can be proved that the roots of the

equation  (3.28)  remain the same for any basis considered in the space The set of these roots is

called the spectrum of and it is denoted as 

An important question here arises : 

The answer is positive when the field is “algebraically closed”, that is any algebraic equation with

its coefficients in has all its roots in Such a field is the complex field according to

the famous Fundamental Theorem of Algebra due to the French mathematician  Evariste Galois

(1811-1832). The answer can be negative for particular equations over a not algebraically closed field

like the field of real numbers Let us recall that we met this problem in  § 3.3, where the method

of orthogonal transformations (or the EVV-based method) was presented for the diagonalization of

quadratic forms. But the matrix of any such Q-form is symmetric and the symmetric matrices

over have only real eigenvalues. As regards the operators, let us consider a very simple example. 

Example 3.1.  Let be a vector space of dimension 2, spanned by the basis and

let the operator  be defined by   

Are all the roots of Eq. (3.28) in the field ? 
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(3.30)

The two roots of the polynomial in (3.30) are ~

For the moment, let us assume that all the eigenvalues of  are in  (that is, 

or let us consider only those roots of Eq. (3.28) that meet this condition. The next problem regards
the way to find the eigenvectors corresponding to an eigenvalue 

Finding the eigenvalues and eigenvectors of an operator   

The matrix M is assumed to be known / given. 

The characteristic polynomial is written. 

The characteristic equation  is solved (in ) giving 

                                  (3.31)

as  distinct  eigenvalues. 

For each the  homogeneous system (3.27) is written  

and solved. The basis spanning the set of its nontrivial solutions consists 

of the relevant eigenvectors corresponding to 

A sub-basis  spaning  has to be found.  will 

be a  canonical basis in which the matrix of the operator is expected to be diagonal.

Remark 3.1.  Before giving an example (to illustrate how the eigenvalues and eigenvector of an

operator can be (found), let us see that the homogeneous system whose (general) solution for 

gives  can be solved on its matrix, obtained from the matrix of the H-system in (3.27') by

simply taking instead of  The resulting matrix will be singular since  is a root of Eq.

(3.28).  Hence the corresponding H-system will admit non-trivial solutions. 

Example 3.2. The operator  is specified by its matrix in a basis 

(3.32)

It is required to find its eigenvalues and eigenvectors (eigen-subspaces). 

The characteristic polynomial is 
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                        (3.33)

(3.33)  |  is a double root, hence a double eigenvalue, while 

is a simple eigenvalue.   The matrix of the first homogeneous system (for is 

(3.34)

The general solution of this system will depend on two variables (parameters) that can be denoted

as and  we thus obtain the first general eigenspace corresponding to 

(3.35)

Hence the eigen-subspace is spanned by two eigenvectors that follow

from  (3.35) ; they can be obtained by giving particular values to the parameters Obviously,

 is excluded. Two pairs of values that ensure the linear independence of the eigenvectors

thus obtained are   

(3.36)

(3.37)

Since the vectors in (3.36) & (3.37) are two eigenvectors corresponding to the first eigenvalue, the

corresponding eigenspace can be effectively written as 

                  

In fact, this expression of a general vector in the first eigen-space is consistent with the general

solution of the H-system, written in Eq. (3.35). For the third (or second distinct) eigenvalue we

similarly have 
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(3.38)

  (3.38)    |   

~

Remark  3.2.  This example illustrates an interesting case, namely the one when the eigenspace

is spanned by a basis consisting of more than one (eigen)vector. In the previous example, 

L The dimension of an eigen-subspace is called

the geometric multiplicity of this eigenvalue and it is denoted as 

(3.39)

On another hand, the characteristic polynomial of an operator has been assumed to admit

m distinct roots see Eq. (3.31). It is known from the theory of the algebraic

equations that such a polynomial can be factorized into m factors corresponding to its distinct roots -

the eigenvalues :  

(3.40)

where   is said to be the algebraic multiplicity of The next result states an

inequality between these two multiplicities. 

PROPOSITION 3.5.  Let be a linear operator of space  with its matrix in
basis of space and its characteristic polynomial  admitting a factorization of the form

(3.40)  that corresponds to the spectrum  

(3.41)

Then, for any eigenvalue  its geometric multiplicity is at most equal to its algebraic

multiplicity :   

                                         (3.42)

We do not give a proof of this result. We only mention that it will be involved in an important

theorem regarding the possibility to change the matrix of an endomorphism to a simpler form.

Before giving the next definition, let us remark – on the algebraic multiplicities that occur in  (3.40),

if –  that they satisfy the equation  

(3.43)

Definition  3.3.  Let be a linear operator of space with its matrix in basis of

space The operator  is said to be  diagonalizable if there exists a basis  of  such that 
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(3.44)

Remarks  3.3.  Let us recall that we met this problem – of bringing a matrix to a simpler form – in

some of the previous chapters and sections. For instance, the Gaussian elimination method for

solving linear systems (in § 1.2) implied the transformation of the matrix of a system  by

(linear) transformations on the rows of the augmented matrix  until the identity matrix

was obtained instead of of instead of a square submatrix of (of order  the

respective form was called a diagonal / quasi-diagonal form. Earlier in the same § 1.2 , the

transformations with the rows / columns of a matrix were presented (and used in examples) for

determining the rank of a matrix, until a quasi-triangular was obtained. But a more typical instance

of turning a square matrix into a diagonal matrix of the form (3.44) was discussed and exemplified

in  § 2.3  - The Diagonalization of Quadratic Forms. All the three methods there presented (GAUSS,

JACOBI  and OT-EVV or ORTHOGONAL TRANSFORMATIONS) turned the (symmetric) matrix 

or of a Q-form into a diagonal matrix. These transformations involved the relationship defining

similar matrices, and it is appropriate to recall a couple of equations / formulas in that  § 2.3 : 

Two matrices  were said to be similar (denoted by Eq. (3.134) at page 105 : 

                 (3.45)

We proved that a square matrix consisting of  n  independent eigenvectors of matrix can

be the similarity matrix  of  (3.45)  -  see Eq. (3.132) in  § 2.3 , page 105 : 

 with (3.46)

Characterization  (3.45)  of similar matrices was obtained from Eq. (3.133) in  § 2.3 , that is 

                                    (3.47)

            (3.47)  |      (3.48)

Obviously, the eigenvectors  in  (3.46)  respectively correspond to the eigenvalues

of (3.47) - (3.48) and their linear independence is essential : it ensures the non-singularity of the

similarity matrix This property makes possible the implication 

(3.49)

Remarks  3.4.  As regards the operators, we have presented and proved the formula for the matrix

change of an operator after a change of basis in  § 4.2 : Eq. (2.73) in PROPOSITION 2.8 (page 179) : 
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                                       (3.50)

We also remarked the equivalence between this transformation formula and the similarity relation

of (3.49) :  (3.50)  | with    

Diagonalization of Operators 

The diagonalization of an operator is (as just mentioned) a problem of transforming its matrix its

matrix in basis of space into a simpler matrix like the diagonal matrix of Eq. (3.43). There

are cases when an effective diagonalization (by means of EVVs) is not possible, but a close-to-

diagonal matrix can however be obtained. Such situations will be considered in the next subsection. 

 A diagonalization process essentially involves a change of basis If such a change

is achieved by means of a transformation matrix that is then the matrix of the

operator changes by formula  (3.49), just recalled above. The relation among the matrices

and  is also a similarity relation, as earlier mentioned :      

  with  (3.51)

In this equivalence we have replaced  and (consequently) taking into

account the equations (3.45) & (3.46) at page 206 : they imply that the matrix satisfying the EVV

equation is the transpose of and not itself. This remark is even more relevant in the case

of operators on an Euclidean space or when the transpose is usually involved

in determining the eigenvectors. 

To conclude, the term of diagonalization of an endomorphism will be used in this (narrower)

sense, the one of  Definition 3.3.  Although the transformation matrix is not there (explicitly)

considered, it always exist when a change of basis is taken into account. 

A necessary and sufficient condition for an operator to be diagonalizable is given by

THEOREM 3.1. Let be a linear operator of space with its matrix in the

basis of space and its characteristic polynomial  is diagonalizable if and

only if there exists a basis of consisting of eigenvectors of 

Proof.  According to  Definition 3.3. , there exists a basis in which the matrix of is of

the form (3.44). According to the definition of the matrix  in a basis (see PROPOSITION 2.2 in §

4.2 - Eq. (2.10) at page 165, rewritten for basis  

(3.52)

But it follows from (3.52) and Eq. (3.1) of Definition 3.1 that are eigenvectors of

respectively corresponding to the eigenvalues Hence the condition in the

statement is necessary. 
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 Let us now assume that  B or is a basis of 

consisting of the n  eigenvectors of respectively corresponding to eigenvalues

According to  Definition 3.1, 

 (3.53)

The  n  equations  (3.53)  can be written one under the other resulting in the matrix equation

(3.54)

It obviously follows from equation (3.54), with Eq. (2.10) at page 165, that the matrix  of  

in the basis is just the diagonal matrix with the  n  eigenvalues on its main diagonal : 

 (3.55)

Hence the condition in the statement is sufficient, too.   �

Remarks  3.5.  The preceding THEOREM gives not only a necessary and sufficient condition for an

operator to be diagonalizable. It also gives the structure of the matrix in the basis consisting of

the  n  eigenvectors :  n  eigenvalues to which these vectors  correspond are the entries

on the main diagonal of (while the other entries are But it is important to notice that

these eigenvalues should not be pairwise distinct while the vectors  are necessarily

distinct : otherwise they would be linearly dependent. A basis cannot contain two identical vectors

! In other words, an eigenvalue can appear several times on the main diagonal of  Without now

going into details, we state that such a situation occurs in the case when an eigenvalue

has its algebraic multiplicity  see factorization (3.40) of the characteristic

polynomial (at page 205) and Example 4.2.  If in inequality (3.42)  (PROPOSITION  3.5 at

page 205), will appear exactly  on the main diagonal of and  vectors will occur

in basis Although this is a technical detail, the identical values of are usually written

together on the diagonal of  they form a diagonal submatrix (or block), 

 of size  

Similarly, the  distinct vectors corresponding to this multiple eigenvalue can be written

together, if the basis is written as an ordered n- tuple of vectors,  The structure

of the basis will be If we “take off” this sub-basis 

(3.56)

we shall see that it is just the basis spanning the solution set  to the homogeneous system   

                                     (3.57)
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The next theorem gives another necessary and sufficient condition for the possibility to

diagonalize an operator, in terms of the multiplicities of its eigenvalues and corresponding
eigenvectors. 

THEOREM 3.2. Let be a linear operator of space with its matrix in a

basis of space and the characteristic polynomial Let

be the distinct eigenvalues of with their respective

algebraic multiplicities and the corresponding eigen(sub)spaces 

(3.58)

  The endomorphism is diagonalizable if and only if  

                 (3.59)

 The sum of the eigen(sub)spaces in  (3.58)  is direct : 

    (3.60)

Proof. By the hypothesis on the  m   eigenvalues,  

(3.61)

In view of  PROPOSITION 3.2 - Eq. (3.8),  (3.61)  |  

(3.62)

According to the last mention in Remarks 3.5, the coordinates of any vector in the eigenspace

corresponding to should satisfy a homogeneous system of the form  (3.57) : 

(3.63)

But we have also noticed that the subspace of (3.63) is just the solution subspace of the

homogeneous system  (3.56)  or  (3.63). Hence 

  (3.64)

By the inequality  (3.42)  in  PROPOSITION 3.5  and Eq. (3.43)  at page 205, 

  (3.65)

The union of subspaces in  (3.64)  is an “almost disjoint” union : the m subspaces have the zero
vector as their single common element. Therefore, 

(3.65)

Each eigen-subspace with is spanned by a specific basis 
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(3.66)

The  m  equations of the form  (3.65) can be assembled into a single matrix equation involving the

basis of the whole space so that  

    (3.67)

In the rightmost side of  (3.67)  we have used the symbol  “/ ” for separating the m diagonal

submatrices, each of them consisting of exactly “copies” of the eigenvalue  on

its diagonal.  Thus, this part of the proof is complete.  

  If the spectrum of is and is diagonalizable, it satisfies

Definition 3.3  - Eq. (3.43). On another hand, the general structure of the characteristic

polynomial  of (3.40) implies the existence of the m  eigen-subspaces in (3.58), with 

(3.68)

But the subspaces in  (2.58) are pairwise disjoint, up to the zero vector (as earlier argued). Their

disjoint union, as in Eq. (3.64), covers the whole space In view of   Definition 3.3  - Eq. (3.43),

any vector admits a linear expression (in basis of the form 

(3.69)

The sum in (3.69) can be split into  m  subsums since each eigen-subspace of  (3.58)  admits its own

sub-basis, as we have earlier written L Therefore 

(3.70)

This expression  (3.70)  shows that is the sum of the  m  eigen-spaces of   (3.58). 

On another hand, the trivial intersections in (3.62) plus a consequence of GRASSMANN’s

THEOREM on the dimensions of two subspaces, of their sum and their intersection implies
property  in the statement and also the equality  

(3.71)

 Eq. (3.71) with the inequality  (3.42)  leads to 
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and is thus entirely proved. 

As regards part it holds in view of the intersection in (3.62) – a consequence of

PROPOSITION 3.2 : the sum of the eigen-spaces (respectively) corresponding to distinct eigenvalues

is a direct sum.  In the textbook [C.  Radu, 1986], this property appears as part in Theorem 1.1

at page 57, but it is stated for distinct eigenvalues and not necessarily for all eigenvalues of the

endomorphism Prof. C. Radu’s proof (at page 58) is developed by induction with respect to p. 

It is possibly simpler than ours, but our proof has included the structure of the “canonical” basis 

 L

as well as the structure of the diagonal matrix – in Eq. (3.64).  Thus, the equation (3.64) can now be

completed : 

�

COROLLARY 3.1. (Sufficient Conditions for Diagonalization).  If the spectrum of an endo-

morphism is 

(3.72)

then the endomorphism is diagonalizable. 

Indeed, this is an immediate consequence THEOREM 3.2. Let us only see that (3.72) implies 

Each sub-basis  consists of a single eigenvector : As regards the matrix it

consists of the  n  distinct eigenvalues on its diagonal : 

(3.73)

Another sufficient condition for the possibility to diagonalize an operator can be expressed in

terms of the geometric multiplicities of its eigenvalues, as discussed in the proof of the previous

THEOREM : 

 and   is diagonalizable. 

Another aspect regards the most often met type of operators met in practical applications, the

linear maps of the form 

A series of examples follow, able to illustrate various situations that can occur when the

problem of operators’ diagonalization is approached. All the theoretical issues so far presented are

applicable, but – for instance – the homogeneous systems producing the eigenvectors

can be obtained from the solution(s) of homogeneous systems of the form

                     (3.74)
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Example 3.3.  The endomorphism is an involution. Check that its eigenvalues are

Let us recall, from Definition 2.8 in § 4.2 (page 190), that an involution is defined by

in this case  or For a vector 

 

                             ~

Examples 3.4.  Find the EVVs (eigenvalues and eigenvectors / eigen-subspaces) of the next 4

operators and given by their matrices, and check

which of them is / are diagonalizable. 

                 

              

     

                     (3.75)

    (3.71)  | 

                    

Therefore, is not diagonalizable.   ~

  For the second operator we proceed similarly but we offer less calculation details. The

characteristic polynomial is 
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 (3.76)

For the double eigenvalue in (3.76), the matrix of the corresponding homogeneous system is 

                     

Hence, is not diagonalizable, too. ~

  

(3.77)

It follows from  (3.77)  and COROLLARY 3.1 that is diagonalizable.  Since it is the first operator

(so far met, in this section) that can be diagonalized, we are going to determine its eigenvectors and

its diagonal matrix (in the basis consisting of the three eigenvectors). For each eigenvalue in (3.77)

we have to solve the corresponding homogeneous system. We present these calculations (in detail)

taking into account that it is a little more difficult to operate with irrational eigenvalues, hence with

irrational entries in the matrices of the systems to be solved.     

  

 (3.78)

It can be seen that the second and the third rows in the matrix of (3.78) are proportional, hence one

of them may be deleted. It suffices to check that the south-eastern minor of order 2 in (3.78) is = 0.

Hence, this matrix is equivalent to 
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              (3.79)

Finally, the matrix of the third H-system can be obtained from the matrix in (3.78) by taking the

conjugates of the irrational entries : 

    

              (3.80)

Taking  in the three eigenvectors just found we arrive to the (particular)

eigenvectors 

        (3.81)

According to the theoretical discussion preceding these examples, the three vectors in (3.81)

should form the basis B  in which the matrix of is expected to be diagonal, namely 

It is possible to check this conjecture as follows : The three eigenvectors of (3.77)

should be assembled to form the similarity matrix  of Eq. (3.48) at page 206, for

the similarity of two arbitrary matrices (not necessarily connected with linear operators),

respectively of Eq. (3.50) at page 206. In fact, Eq. (3.47) is more convenient to check since it does not

require to invert the matrix it comes to equation  with 

                             (3.82)

Hence we get, from (3.81),  
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(3.83)

 

                    (3.84)

                       (3.85)

It follows from (3.84) and (3.85) that equation (3.82) is satisfied. Therefore,  this operator has

the diagonal matrix with the eigenvalues of  (3.77),  in the basis whose vectors are the columns of

the matrix in  (3.83). ~

   (3.86)

The characteristic equation is, by (3.86), 

              (3.87)

Therefore, the spectrum of this endomorphism is  

 with
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Hence  and one of the conditions in the statement of THEOREMS 3.1 & 3.2, namely

 is not satisfied and is not diagonalizable. ~

We shall see, in what follows, that an endomorphism over the real field  ú with some complex

eigenvalues admits a matrix, in a certain basis consisting of eigenvectors, which is close to a diagonal

matrix. But this falls in what we call the Normal Forms of operators, to be approached in the next

subsection.. We offer one more example of an endomorphism defined over  ÷ , with its eigenvectors

and diagonal matrix. 

Example 3.5.  The endomorphism is defined by (the transpose of) its matrix in

the standard basis 

   (3.88) 

It is required to find its matrix in the basis and to

determine  

(3.89)

using both the standard basis and basis 

The standard basis of the complex Euclidean space is the same with the well-known 

of the space Hence the transformation matrix for is 

(3.90)

In order to apply the matrix change formula (2.81) in  § 4.2 , this matrix in (3.90) has to be inverted.

The Gaussian elimination technique is the most convenient to be applied. 

    

       (3.91)

The reader can check that the inverse in  (3.91)  is correct :  
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  (3.88)  | (3.92)

  (3.88) , (3.92) & (3.91)  |   

  (3.91)

With the matrix in (3.91) we can find the images of the vectors in basis for instance

(3.92)

If we want to work in basis we can apply formula (2.15) in § 4.2 (page 166), written for basis

But it is simpler to apply the definition of the matrix of an endomorphism

in a basis, that is Let us  check the image for the first vector, 

Hence, the image of found in (3.92), has been retrieved. The images can be similarly

checked . 

 The image of the vector in  (3.89) can be found (using basis with matrix of  (3.91)  and

the coordinates resulting from (3.89)  : 

      

         

              (3.93)

This expression of  allows to write it as a (column) vector in but it is appropriate to write
the vectors of  as column vectors, for an easier calculation : 
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(3.94)

     

                       (3.95)

The same image can be found, as a vector in using the (transpose) of matrix in the

standard basis, that is the matrix in (3.88). But the vector should be previously found, with

the basis in  (3.94)  and its coordinates in  (3.89) : 

                                 (3.96)

Eqs. (3.88) & (3.96)  |  

 

Thus, the image of  (3.95)  has been retrieved and the example is completed.  ~

Note. Two cases when an operator cannot be diagonalized were earlier presented. It comes to the

situation when  A typical case is the one

when the operator is defined over a  real vector space but the characteristic polynomial admits at

least one complex eigenvalue, The other case regards the condition in point of

THEOREM 3.2, that is for all In the former case, an “almost

diagonal” form can be obtained, with 2-by-2 cells on the diagonal of the canonical matrix,

corresponding to each pair of complex-conjugate roots In the latter case, a so-called

JORDAN NORMAL FORM of operator’s matrix can be found.  Theoretical issues and examples on these

cases can be found in  ƒA.C., 1999„ , pages 166-180, in ƒA.C., 2014„ and in other textbooks of LINEAR

ALGEBRA.  
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§ 4.3-A   APPLICATIONS TO ENDOMORPHISMS: EVVS - NORMAL FORMS 

The endomorphism   is given by its matrix in the standard    

    basis  

It is required to find its (three) eigenvalues and the corresponding eigenvectors ; 

then write its diagonal matrix in the basis consisting of these vectors and check it. 

Find the eigenvalues and the corresponding eigenvectors for the operators of the 

form  given by their (transposed) matrices in the corresponding

standard bases :  

          

            

Study the possibility for the following matrices (representing linear endo-

morphisms to be diagonalized : 

 

Check that the matrix given below satisfies its characteristic equation, that is 

where 

    

Hint : The result follows from the Cayley-Hamilton Theorem. But the equation can be

easier checked after the factorization of the characteristic polynomial into linear factors. 


