Sample Subjects for the Semestrial Test - 12/8/14 (A)

Invert the matrix

$$\boldsymbol{A} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

and (then) solve the matrix equation

$X\begin{bmatrix} -1 & 0 & 1\\ 1 & 3 & 2\\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 0\\ 3 & 0 & 4\\ 1 & 3 & -1 \end{bmatrix}$	X	-1 1 0	0 3 1	1 2 0	=	-1 3 1	2 0 3	0 4 -1	.
---	---	--------------	-------------	-------------	---	--------------	-------------	--------------	---

Hint. The equation is of the form XA = B with the solution $X = BA^{-1}$. But this solution can also be found (under its transpose form) by applying the Gaussian elimination to the block matrix $[A^{T}|B^{T}] \rightarrow ... \rightarrow [I_{3}|A^{-T}B^{T} = X^{T}]$.

Solve the homogeneous system

$$\begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 3 & -1 & 1 \\ 2 & 7 & 1 & -1 \end{bmatrix} X = \mathbf{0} .$$

Determine the real parameter α so that the two vectors

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ \alpha \\ \alpha \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} \alpha \\ 1 \\ 2\alpha - 1 \end{bmatrix}$$

be linearly dependent and find a linear dependence relation between them.

TS - 4

In a space $V = \mathcal{L}(A)$, $A = [a_1 \ a_2 \ a_3]$ is considered the vector

 $x = 2a_1 - a_2 + 5a_3$. The basis is changed for $B = [b_1 \ b_2 \ b_3]$ by the transformation matrix

$$T = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}.$$

It is required to find the coordinates X_B in the "new" basis and to check them.

TS-5 Determine the dimensions of subspaces $U, W \subseteq \mathbb{R}^3$ respectively spanned by $A : \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}^T, \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & -3 \end{bmatrix}^T$ and $B : \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T, \begin{bmatrix} 1 & 3 & 3 \end{bmatrix}^T;$

Then find the dimensions and a basis for each of $U + W \& U \cap W$.

Sample Subjects for the Semestrial Test - 12/8/14 (B)

Determine the rank of the matrix

$$A = \begin{bmatrix} -2 & 7 & 2 & -3 & 5 \\ 2 & 1 & -1 & 2 & 1 \\ 0 & 8 & 1 & -1 & 6 \end{bmatrix},$$

find a basis spanning $COLSP_A$ and express the other columns in this basis.

Find the (values of) the real parameter m so that the linear system A(m)X = b(m) be consistent and find its solution(s) in such cases :

$$A(m) = \begin{bmatrix} 1 & -m \\ 2 & 1 \\ 3 & m-1 \end{bmatrix}, b(m) = \begin{bmatrix} -1 \\ m \\ -m+1 \end{bmatrix}$$

TS - 3

A bilinear form $f: V \times V \to \mathbb{R}$ is defined by its matrix in a basis *A*, namely

$$f(A^{\mathrm{T}},A) = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 3 & -5 & 4 \end{bmatrix}.$$

It is required to determine rank f, its value f(x, y) for $x = a_1 - 2a_2 + 3a_3$ and $y = 4a_1 + a_3$, and also the matrix of f in the basis B, where

$$B^{\mathrm{T}} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} A^{\mathrm{T}}.$$

TS - 4

A linear form $f: V \to \mathbb{R}$ is defined by its coefficients in a basis A, by $f(A) = [\alpha] = [8 -2 1]$. It is required the value $f(3a_1 - 2a_2 + a_3)$ The basis is changed for $B = [b_1 \ b_2 \ b_3]$ by the transformation matrix

$$T = \left[\begin{array}{rrrr} 1 & 0 & 2 \\ 1 & 1 & 3 \\ -1 & 2 & 1 \end{array} \right].$$

Determine the coordinates X_B in basis B, $[\beta] = f(B)$ and f(x) with basis B.

TS – 5

Determine the a basis for the subspace U = S = the solution subspace to the H-system

$$\begin{bmatrix} 1 & -1 & 0 \\ 3 & 0 & 1 \\ 2 & -2 & 0 \end{bmatrix} X = \mathbf{0}, \quad W = \mathcal{L}([b_1 \ b_2]), \quad b_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \& \quad b_2 = \begin{bmatrix} -2 \\ 0 \\ -4 \end{bmatrix}.$$

Check *Grassmann's Theorem* for $U, W \subseteq_{\text{subsp}} \mathbb{R}^3$.

TS – 1

Sample Subjects for the Semestrial Test - 12/8/14 (C)

Turn the matrix, given below, into a quasi-triangular and quasi-diagonal form.

$$A = \begin{bmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -3 & 1 & 1 \end{bmatrix}.$$

Identify a subset of independent columns and express the other columns in terms of the independent ones. Alternatively, solve the H-system $AX = \mathbf{0} \in \mathbb{R}^4$.

TS-2 There are considered the three vectors in \mathbb{R}^4 ,

$$\mathbf{u}_{1} = \begin{bmatrix} 2\\1\\3\\1 \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \quad \mathbf{u}_{3} = \begin{bmatrix} -1\\1\\-3\\0 \end{bmatrix}.$$

It is required to find a basis and the dimension for $\mathcal{L}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.

A symmetric bilinear form $f : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ is defined by its matrix in the standard basis *E*, namely

$$f(E^{\mathrm{T}}, E) = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -3 & -1 \\ 1 & -1 & 4 \end{bmatrix} = \begin{bmatrix} \varepsilon \end{bmatrix}.$$

It is required to determine the value $f(a_1, a_2)$ for $a_1 = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}^T$, $a_2 = \begin{bmatrix} 4 & 0 & 3 \end{bmatrix}^T$ and also a basis **B** for U^{\perp_f} where $U = \mathcal{L}(\{a_1, a_2\})$.

TS -4

The linear form $f : \mathbb{R}^3 \to \mathbb{R}$ is defined by its analytic expression $f(X) = x_1 - 2x_2 + 4x_3$.

It is required f(X) for $X = \begin{bmatrix} -4 & 7 & 2 \end{bmatrix}^T$, the coordinates X_A in the basis

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} a_3 \end{bmatrix}, a_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, a_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, a_3 = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}; \text{ check } f(X) \text{ with basis } A$$

TS-5 Study the consistency of the three linear systems, $AX = [b^{(1)} b^{(2)} b^{(3)}]$ given by their augmented matrix

$$\tilde{A} = \begin{bmatrix} A \mid B \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \mid 3 & 4 & 0 \\ -1 & 1 & -1 \mid 2 & 1 & 0 \\ 3 & -1 & -1 \mid 8 & 3 & 0 \end{bmatrix} X = \mathbf{0}$$

Find the general solutions for the consistent systems.