
Chapter 2
VECTOR SPACES AND SUBSPACES

 § 2.1  VECTOR SPACES, GENERATORS, BASES AND COORDINATES 
The notion of vector space (synonim : linear space) represents the

fundamental mathematical structure for the LINEAR ALGEBRA. Its formal
definition needs the reader to be acquainted with such algebraic structures as
groups and fields (which are studied in the highschool). But, unlike the latter
ones which are defined by means of internal operations (laws of composition),
the notion of vector space involves both an internal operation ! the vector sum
(or vector addition) ! and an external one ! the multiplication by scalars. 

The axiomatic definition of a vector space may be given in a condensed
version (using the notion of group for the additive operation), but we start with
the full definition (consisting of ten axioms): 

Definition 1.1. Let  V   be a nonempty set (of vectors) and    a field (of scalars).
Then V  is a vector (or linear) space over    if the following properties (axioms)
are satisfied : 

  (L 1)  
  (L 2)  

  (L 3)  

  (L 4)  

  (L 5)  
  (L 6)  

  (L 7)  

  (L 8)  

  (L 9)  

  (L10)       

Remarks 1.1.  It follows from axioms  (L1 ,..., L5 )  that  +V; +,  is an Abelian
group. We recall that (L1) means the closure of  V  under  +, (L2) is the
associativity of the sum, (L3) states the existence of the zero vector, (L4) defines
the negative of a vector  x  and (L5) states the commutativity of the vector sum.
The addition sign  +  in (L10)  is used with two different meanings:  it stands for
the scalar sum of the field    in the left hand side, while it denotes the sum of
vectors in  V  in the right hand side, respectively. In the r.h.s. of  (L8)  λ μ  is the
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2   Ch.2      VECTOR SPACES AND SUBSPACES  

(commutative) multiplication of the scalars in the field  , also denoted as . 

Remark 1.2.  (Notational conventions).  As already used in Def. 1.1, the vectors
in  V  are denoted by (italic) Latin letters  (x, y, u, v, ...), sometimes subscripted; 
the scalars in    are denoted by Greek letters (λ, μ, α, β,...), also subscripted
when necessary. This latter convention will be eventually ignored for
convenience. It is important to distinguish between the zero vector  0  and the
zero scalar in   :  the latter one will be denoted by  0  or  o. For this structure of
vector space  V  over a field    we shall use the notation 

                                                                                (1.1)

Remark 1.3.  Not all the properties  (L1) thru (L10) are independent or ! in other
words ! the system of axioms  (L1 , . . . , L10)  is not minimal. For instance, the
commutativity (L5) of the sum in  V  follows from other properties. Indeed, let
us express  in two different ways :

           (1.2)

          (1.3)

Axioms  (L9), (L10) and (L7) have been used in equations of (1.2), and  (L10),
(L9) and (L7)  in (1.3), respectively (in the specified orders). It follows from (1.2)
and (1.3) that 

                                                                 (1.4)
By adding   to the left of both sides of Eq.(1.4) and    to the right of them,
we derive ! in view of  (L2),  (L4)  and  (L3)  !  that   hence the
addition in  V  is commutative. However, we keep this axiom for letting remain
together the axioms of the Abelian group. 

Remark 1.4.  The field    underlying the vector space V  may be, for instance,
a numerical field  like  ú  (the real field)  or  ÷  (the complex field). For   = ú, 
V  is said to be a  real  vector space. 

Definition 1.1 of a vector (or linear) space has a couple of immediate
consequences, stated together in 

PROPOSITION 1.1.  The following properties of a linear space  V  hold :
(L11)   

(L12)   

(L13)   

(L14)   
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(L15)   

(L16)   

Proofs. We shall prove properties (L11), (L13) and (L16)  and leave the proofs of
the remaining properties as exercises. We may write 
  
axioms (L4),  (L3), (L5), (L2) and (L10)  have been here applied. If we now add the
negative  to both the leftmost and rightmost sides of this (multiple)
equation we obtain (L11).

(L13)  readily follows from  (L10) and (L4), with the zero scalar written as 
 indeed,  Finally, to check (L16)

we must prove that  To see this, let us remark that 
  
The last equation follows from the just proved property  (L13).                                   

Examples of vector spaces 

Example 1.1.  The set of  "geometrically defined" (free) vectors in the plane or
in the space forms a linear space over the field  ú  of real numbers. We do not
insist here on this space since it will be extensively presented in the last chapter.

Example 1.2.  For a given field    and any integer  n $ 1, denote by   the
set of all ordered n-tuples  

    

 are distinct unless   This set   
forms a vector space with the operations defined by 

                                                          (1.5)

                                                                      (1.6)

This is an important example, which in many ways is typical (as it will follow
from a theorem to be presented later on in this section). For   

are said to be the  components of the vector  X. In particular, it follows
for  n = 1  that any field    may be regarded as a vector space over itself. For 

 = ú  we obtain the space  of the n-dimensional real vectors. Let us still
mention that the vectors  X  in this space   may be regarded as one-row /
one-column matrices : 

                                            (1.7)
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Example 1.3.  Let  F   be an arbitrary field, and let us denote by  F ù  the set of
infinite sequences  over  F,   Addition and multiplication by
scalars can be defined as in (1.5) and (1.6), and it is obvious that the two
operations endow this set with the structure of a vector space over F. In
particular, the set  ú   of the sequences of real numbers is a vector (or linear)
space over  ú.

Example 1.4.  Let  M m,n  denote the set of all matrices of size   (that
is, with  m  rows and  n  columns) over a field  F / over  ú. The two operations
involved in  Def.1.1 are defined on  M m,n  as follows : 

Let    be in  M m,n ;  then 

                                               (1.8)

obviously are in  M m, n  too, and the other eight properties of the addition and
multiplication by scalars can be easily verified. Therefore, the set of   
matrices over  F / over  ú  is a vector space over that field. In particular, the two
sets  M 1, n  and  M m ,1  are practically identical to the space  F n / ún , since they
consist of (ordered) n-tuples of scalars in  F / of real numbers ;  the only
difference regards the way these  n-tuples are written, that is

respectively.                                  (1.9)

Example 1.5. Let  I  denote an interval in the set  ú  of the real numbers and
let  öI  be the set of all real functions defined on  I . The two linear operations
on  öI  are introduced in a natural way by  

                      (1.10)

In particular, the set  CI  of the continuous functions on interval  I  is a vector
space over  ú. The same property holds for the differentiable functions on  I . 

Example 1.6. We are closing this set of examples by a trivial one, namely
the space consisting of a single vector    with the two linear operations
defined by  and    for any scalar    This space V0 =

 is called the trivial space  (or the null space); the reader can check that
all the ten axioms in Def. 1.1 are satisfied. ~

Let now V  be an arbitrary vector space over a field  . A new
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(compound) operation involving several vectors (and scalars) may be
introduced by 

Definition 1.2.  An expression of the form 

                                             (1.11)

in which    are scalars in  F  and    are vectors in  V,
is called a linear combination of the vectors   (with scalar
coefficients  ). If a vector  x  is equal to some linear combination
of  it is said to be expressible linearly in terms of these vectors.                                                   



It is clear that an expression of the form (1.11) is also a vector in  V  since its
terms, that is   are in V  according to  (L6) - Def. 1.1, and
a multiple sum of terms is well defined in any additive structure with
associative addition ! see axiom  (L2).

It will be convenient (in what follows) to use a special kind of a so-called
"matrix notation" for writing linear combinations of the form (1.11). Let us
denote 

X    (1.12)

then the linear combination (1.11) may be written as 

X T  =  X  (1.13)

Note that the components  x i 's  of  X  in (1.12) are vectors and not scalars as the
ones of  X  in (1.7). On another hand, the rightmost side in Eq. (1.13) is a sum
of terms of the form   with the scalars written after the vectors ;  this is a
matter of convention, since both  and    may stand for the vector  
multiplied by scalar   

The linear combinations are essentially involved in defining a pair of new
notions, more precisely two complementary types of relations among several
vectors in a vector space  V. They are introduced by 

Definition 1.3.  Let  V  be a vector space over a field  F  and let us consider the
equation 
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                             (1.14)

the vectors   are said to be 

(i)  linearly independent  if Eq. (1.14)   |     (1.15)

  (ii)  linearly dependent  if (1.14) also holds for at least one  that is,

        and Eq. (1.14) still holds.     (1.16)

A family  A =  of vectors in  V  is said to be linearly independent
/ dependent when the vectors it consists of satisfy (1.15) / (1.16), respectively. 
            

Another notion has also to be introduced as a preliminary to the the
definition of the important notion of basis : 
Definition 1.4.  Let  V  be a vector space over a field  F  and  W f  V . The subset 
W  is said to be spanned (or generated ) by a family  A =  of
vectors in  V  if 

  (1.17)

The vectors    are said to be the  generators  of the subset  W.       


Under the conditions in Definition 1.4  we will use the notation 

 W  = L (A ).

Example 1.7.  Let us consider three vectors in the space  namely 

It can be seen that therefore the three vectors are linearly
dependent ; since it follows that 
 L ~

Remark 1.5.  Given a family A  of  m  vectors and another vector  x  in  V, it is
possible that  x  may be written as a linear combination of the vectors of  A , that
is, as in Eq. (1.17). But it is also possible that no such expression exists, or !
equivalently ! that  x  is not linearly expressible in terms of the vectors in  A.
And, when it is expressible, its linear expression (1.17) may be not unique. Just
this happens in the case when  A  is a dependent family of vectors. To illustrate
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this latest remark, let us consider the vector and the three vectors
of  Example 1.7.  It can be easily verified that  

Remark 1.6. Any family of vectors including the zero vector is linearly
dependent. 
Indeed, if the family  A =  with   then we can
take a single scalar  

 while  (1.18)

(1.18) 

and this latter equality obviously follows from properties (L13) & (L14) in
PROPOSITION 1.1. Hence the vectors in are linearly dependent, in view of
(1.16) in  Def. 1.3. 

Definition 1.5.  Let V  be a vector space over  F  and  A =  a
(finite) family of vectors in  V.  A  is said to be a basis of  V  if 

   (i)  A  is linearly independent, and 
  (ii)  A  spans V, that is (see Def. 1.4 ! Eq.(1.17)),  V = L (A ) .                           

Remark 1.7.  A basis  A  of a space  V  has been considered as a (finite)
spanning family, therefore as a subset of  V. The fact that  A  is written as a finite
set in Def. 1.5 is not essential. Moreover, there are vector spaces which do not
admit any finite basis. But another problem appears concerning the nature of
a basis: as it will be argued a little later, any basis should be considered ! in fact
! as an ordered family of vectors. Hence, a basis is an ordered n-tuple of
vectors that may be written (for instance) as a row whose entries are vectors :

      (1.19)

For any vector  x 0 V,  it follows from Def. 1.5, (ii)  that  x  can be linearly
expressed in terms of the vectors 

                 (1.20)

Using the "matrix notation"  (1.12) - (1.13) for linear combinations, an
expression like (1.20) may be written as 

                          (1.21)

The scalar components of the column vector   that is   are
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said to be coordinates  of  x  in the basis  A. We do not yet say the coordinates
(...) before stating and proving the next result : 

PROPOSITION 1.2.  Let  A  be a basis of the vector space  V  and   Then
the linear expression (1.20) - (1.21)  of   x  in basis  A  is unique. 
Proof.  We have to show that ! given a basis  A  of  V  and a vector   ! the
vector of coordinates    of  x  in basis  A  is unique. Let us assume that  x 
admits (at least) two linear expressions of the form (1.21) in basis  A, that is 

     (1.22)

or (using the explicit expression (1.20)) 

             (1.23)

Subtracting (side-by-side) the two equations in (1.23)  and applying axiom (L10) 
we get 

                                                                          (1.24)

But Eq.(1.24) gives a linear combination of the vectors of basis  A  equal to  0.
Taking into account condition (ii)  of Def. 1.5  (the linear independence of 

) and Eqs. (1.15) of  Def. 1.3, we get 

   (1.25)

Eq. (1.25) shows the unicity of the coordinates of  x  in basis  A.                   

Example 1.8.  Let us find a basis in the space  presented in Example
1.4. The most convenient spanning family for this space consists of the vectors

                                               (1.26)

If we write together (in the natural order of their subscripts) the column vectors
 we obviously get the identity matrix of order  n : 

  (1.27)
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It is clear that  E  is an independent family (since rank E = n) and it spans the
whole space  Indeed, if  then it can be readily
verified that 

(1.28)

It follows from expression (1.28) that the coordinates of a vector are
just its components. The basis  E  of (1.26) - (1.27) is the only basis of space 
with this property. It is called the standard basis (of the real n-dimensional
space). 

Example 1.9. A general polynomial of order n, with its coefficients in a field
F, in particular in the real field can be written as 

(1.29)

Let us denote the set of polynomials of order  n  over F /  by 

   (1.30)

If another polynomial of the general form (1.29) is considered, for instance 

the two linear operations with polynomials are naturally defined by  
(1.31)

  (1.32)

It can be readily seen that these operations defined by (1.31) & (1.32) satisfy
the ten axioms of a vector space in Definition 1.1. The proof is left as an exercise
to the reader. Let us only specify the “special” elements: the  zero polynomial
is   the negative of a polynomial  p of the form
(1.29) is It follows that the
set(s) in (1.30), endowed with the linear operations of (1.31) & (1.32), is (are)
vector space(s). 

~

The next PROPOSITION presents two relevant properties of linearly
dependent / independent sets (or families) of vectors. 
PROPOSITION 1.3.  Let  V  be a vector space   

A (1.33)

a family of vectors.  
   (i)  If   A  is linearly dependent and  A f A ‘ then  A ‘  is dependent, too ;
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 (ii) If A is linearly independent and A “ f A then A “ is also inde-
   pendent. 

Proof.  The way we have written the “contents” of the family A in (1.33)
suggests that it can be not necessarily finite: it may contain infinitely many
vectors. 
   (i) The linear dependence of the family in (1.33) means, according to Def. 1.3 -
(1.16), that an equation like (1.14) holds even when at least one scalar is  … o.
Hence 

       (1.34)

The inclusion relation in the statement means that the other family of vectors
looks like 

A ‘ (1.35)

It follows that there exists a zero linear combination of the form 

(1.36)

with at least one nontrivial term in the first sum of (1.36), while we may
take trivial (zero) scalar coefficients on the vectors in the complementary set 
A ‘ ( A , that is 

 (1.37)

Obviously, property (L13) in PROPOSITION 1.1 has been here involved. It follows
from (1.34) with (1.37) that Eq. (1.36) holds for (at least) one non-zero scalar
and the family  A ‘ is thus linearly dependent. 

   (ii) The second implication in the statement immediately follows from
former, by reductio ad absurdum. If the inclusion A“ f A holds with
independent  A  and we would assume that  A“ could be linearly dependent,
then, in view of (i), the larger family  A  would be dependent !  This closes the
proof.  

Before stating (and proving) a couple of consequences of this simple result,
let us reformulate it as follows: 

  (i) Any subfamily of an independent family is independent, too ;
 (ii) any superfamily of a dependent family is also dependent.
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COROLLARY 1.1.  Given a basis A of a vector space V, each element (vector)
of  V can be linearly expressed in basis A in one and only one way, and this is
no longer true if any vector whatsoever is appended to or deleted from the
basis A. 
Proof. Let  A  be a basis of space  V. This implies (by Def. 1.5 - (ii)) that 

     V = L (A)  | 

 | (1.38)

According to PROPOSITION 1.2 - (1.25), the linear expression of  x  in basis A is
unique. If (at least one) vector  is deleted from the basis  A  it is obtained the
smaller family  We have just used the notation for the set
subtraction although basis A is considered as an ordered family, as in (1.19). 
If  would remain a basis of space V, the vector  would be
linearly expressible in  

 (1.39)

But this Eq. (1.39) implies the linear dependence of the basis A !  Similarly, if
a “new” vector b is adjoined to  A, resulting in the larger (spanning) family 

(1.40)
this vector is also linearly expressible in basis  A ; hence, the set in (1.40) may
be a spanning family for V  but ! in no case ! a basis since it is not independent. 



Comments.  The statement of the above COROLLARY occurs in the textbook  [S.
LANG, 1988]. In the first edition of our textbook of LINEAR ALGEBRA [A.
Carausu, 1999], we included in the statement of this result (COROLLARY 1.1,
page 11) other two characterizations of the notion of basis. However, we are
going to include them, more properly, in a theorem that follows and brings
together the main characterizations of a basis. 

Before presenting another result, let us state a remark, in fact a
characterization of dependent vectors / families of vectors. 

  
A family  A  of vectors is linearly dependent iff (if and only if) at least one 

vector in  A  is linearly expressible in terms of the other vectors . 

The proof of this rather obvious property will be proposed as an exercise in
the next section of Applications (exercises), 2-A.1 . 

PROPOSITION 1.4.  Let  V  be a vector space and  
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A  (1.41)

a family of linearly independent vectors. Then any  vectors in L (A) are
linearly dependent. 
Proof. By the hypothesis, the independence of  A  means that 

(1.42)

Consider now the   vectors in the statement,  
 L (A). (1.43)

By Def. 1.4, it follows that each of them admits a linear expression in terms of
the vectors of (1.41). But we must write the scalars in the expressions of the
form in Eq. (1.17) with doubly indexed coefficients: for each vector

 of  (1.43),  p  scalars exist such that  

   (1.44)

Let us now write the equation of the form (1.14), involved in the definition of
both linear dependence and independence, for the vectors in (1.44):  

(1.45)

In the double (or iterated) sum of Eq. (1.45), the summation order can be
inverted and it thus follows that 

(1.46)

The sums between the big parentheses of Eq. (1.46)  play the role of the scalars 
 of (1.42) and they must  therefore vanish, due to the independence of the

set  A :  

(1.47)

The  p   equations in (1.47) form a homogeneous system in the unknowns 

Since the matrix   of its coefficients is of size  its rank
is at most the number of unknowns. It is known (from the
highschool algebra) that such a homogeneous system admits nontrivial
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solutions. Hence, at least one   in the first equation of (1.45) is   and the
conclusion in the statement thus holds.  

It follows from this  PROPOSITION 1.3  the next property.

COROLLARY 1.2.  If a subset  is generated by  p linearly independent
vectors then any m vectors of W  are linearly dependent if  

This property could be equivalently stated as follows. 

If a subset  is generated by  p linearly independent vectors then at
most  p  vectors in  W  can be linearly independent. 

The properties so far presented make possible to state and prove an
important result concerning the number of vectors in the bases of the same
vector space. 

THEOREM 1.1.  Let  V  be a ( finitely generated ) vector space over the
field  F.  If  V  is spanned by two bases  A  and  B  then the number of
vectors in  A  and  B  is the same. 

Proof. Let the two bases in the statement be 

 (1.48)

Regarding the number(s) of vectors in the two bases, let us assume that 

  (1.49)

In the first alternative of (1.49), all the vectors of basis  A  are in L (A); hence,
expressions of the form  

 (1.50)

hold. But any such equation implies the linear dependence of the vectors in A 
and this contradicts condition (i) in the definition of a basis – Def. 1.5.
Similarly, the other inequality between  m & n  is also impossible and we thus
have  and the proof is over. 

COROLLARY 1.3.  The number of vectors in all the bases of a (finitely
generated) vector space is the same. 

Hence this (natural) number is an intrinsic feature of a vector space, in the
sense that it does not depend on a particular basis that spans the space. It is
therefore natural to state the following  

Definition 1.6.  The common number of vectors in every basis of a (finitely
generated) vector space  is called the dimension of   and it is denoted as 
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

Remarks 1.8.  In the previous definition, only finitely generated have been
considered. If does not admit a finite spanning family it is not finitely
generated. We may write The earlier mentioned functional spaces
(see Example 1.5 at page 4) are infinite-dimensional. In order to determine the
dimension of a finitely generated vector space it suffices to find a basis which
spans it. The following examples are relevant in this sense. 

Examples 1.10. We presented the space  of the ordered n-tuples of real
numbers, in Example 1.8 - page 8, with its standard basis E consisting of n
(column) vectors. Therefore

The space M m,n  of  matrices  over a field  F / over  ú also admits
a finite (standard) basis. It suffices to consider the   “elementary” matrices 

  (1.51)

The only nonzero (unit) entry of this matrix appears in its i-th row and j-th
column. It is very easy to see that any matrix M m,n  can be written
as a linear combination of such matrices, the scalars being just its entries:   

  (1.52)

The linear independence of the matrices in (1.51) is obvious: if a linear
combination thereof (written as a double sum like in (1.52)) is equated to the
zero matrix  it obviously follows that all the scalars should be

Therefore  dim M m,n = m n. 
The space of polynomials (of order n) was presented in  Example 1.9 at

page 10. For this space  a standard (most convenient)
basis can be obviously considered, taking into account the general expression
of a polynomial - Eq. (1.29): 

(1.29)

This basis is  
(1.53)

and it is easy to see that a polynomial of the form  (1.29)  can be written, with
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our “matrix notations” (1.19) - (1.21) at page 7, as 
(1.54)

Expression (1.54)  implies that   L (B). 
The independence of the “elementary” polynomials of (1.53) ! the com-

ponents of  B ! immediately follows from the definition of the identically zero
polynomial  O ! the polynomial with   Hence 

 In fact, this space of n-order
polynomials is in 1-to-1 correspondence with the space  since any
polynomial of the form (1.29) is uniquely determined by its coefficients that
appear as the components of the column vector  !  the second factor in the
“formal”product of  (1.54). ~

PROPOSITION 1.5.   Let  V  be a vector space over the field  F. Any
independent family of vectors   A   can be extended up
to a basis of the space 
Proof.  The first condition in the definition of a basis (Def. 1.5) is met by the
family  A, but it could not satisfy the second condition, (ii):  V = L(A ). Here the
dimension of the space V should be considered. Let us assume that 
If  it follows from COROLLARY 1.2 that  A  is dependent and it cannot
form a basis. Moreover, it cannot be extended up to basis since any superfamily
of  A  will be also dependent, according to PROPOSITION 1.3 (pages 9-10). If

 then  A  is already a basis. Indeed, it is independent as stated and any
vector   admits a linear representation in terms of (the vectors) of  A : in
the particular (or even trivial) case when A  it follows that 

It follows that the relevant case is the one when  A , what implies that 

A ! (1.55)
cannot be a basis of   it spans the space but it consists of the
dimension of the family in  (1.55)  is necessarily dependent. Therefore, the
family in the statement could be effectively extended up to a basis only if 

 This extension proceeds step by step, in fact vector by vector: the
family  A is extended by adjoining one vector at a time, as
it follows. 

A "  with  (1.56)

This adjoined vector can be selected in such a way that the family  A " remains
independent. Indeed, if no such vector would exist then it would follow that
the greatest number of independent vectors in would be  
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what contradicts the assumption on the dimension of the space. This
extension process can be continued by adjoining another vector   to  A "
and so on, until an independent family consisting of  n  vectors is obtained. The
property that it spans the whole space   follows by the previous argument -
see (1.55). This completes the proof. 

Another ! and somehow dual ! property regards the possibility to reduce
a (larger) spanning family of a vector space to a basis of its. 

PROPOSITION 1.5.  Let V  be a vector space over the field  F. Any spanning
family of vectors  A  can be reduced down to a basis of
the space 

We do not give a (detailed) proof of this result: it may remain as an exercise
to the reader.  

The earlier presented properties and characterizations of the bases of a
vector space are stated together in the result that follows, including Def. 1.5.

THEOREM 1.2.  Let  V  be a ( finitely generated ) vector space over the field  F.

Î  A  family of vectors  A = in  V  is a basis of  V  if 
   (i)   A  is linearly independent, and 
  (ii)  A  spans V, that is V = L (A ). 

Ï  If  A = is a set (or family) of  n linearly independent
vectors in an n-dimensional space V  then it is a basis for  V.  
Ð If A = is a set (or family) of n vectors that span the n–

dimensional space V  then it is a basis for  V.   
Ñ Given a basis A of a vector space V, each element (vector) of V can be 

linearly expressed in basis A in one and only one way, and this is no longer
true if any vector whatsoever is appended to or deleted from the basis A.

Ò  If A  is an independent family in the n-dimensional
space  and it can be extended up to a basis of the space  

Ó  If A  is a spanning family of the n-dimensional space
 and it can be reduced down to a basis of the space  

Ô  An independent family A  in V is a basis }| no set which properly
contains A  is independent.  

Õ  A spanning family  A  of  V is a basis }| no proper subset of  A  still spans

Comments.  The most part of the properties just stated in THEOREM 1.2 were
earlier proved. Other ones will be proposed for being proved in the next section
of APPLICATIONS - EXERCISES. The notion of basis in a vector space was
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synthetically characterized in the excellent textbook of LINEAR ALGEBRA [G.
STRANG, 1988 - page 86] as follows : 

A basis is a maximal independent set. A basis is also a minimal spanning set. 

Examples 1.11. Let   be an   matrix. Obviously, its columns 
are vectors in the vector space  They could form a basis for this space it the
conditions in  Def. 1.5  would be satisfied. 

As it was be presented in  section  § 1.2, mainly devoted to matrices, we
used the following notations for the columns / rows of a matrix : 

  (1.57)

(1.58)

Coming back to the columns of matrix  that occur in (1.57), any
vector  will admit a linear expression in terms of   
if an equation of the form  

(1.59)

will be satisfied. This equation (1.59) is equivalent to a non-homogeneous
linear system whose augmented matrix is 

(1.60)

The system corresponding to Eq. (1.59) admits (at least) a solution, i.e. it is
consistent, if and only if 

(1.61)

as it was stated and proved in  § 1.2  (LINEAR  SYSTEMS). Hence, condition 

(1.61)  |   L (1.62)

But the first condition for  to be a basis for the space it
spans consists in its linear independence. The columns of matrix 

 are independent   

Taking into account the former condition (1.61) we can now write that  
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a basis for
 

 + Condition (1.61).

But the condition for the rank implies  while condition (1.61) can be
satisfied for  any   if and only if   since the
nonhomogeneous linear system that is equivalent to Eq. (1.59) could be
inconsistent for some vectors   when  To
conclude this discussion, it follows that all the columns of an   matrix
can form a basis for space   }|  

  

Hence the matrix should be square. If we relax the condition in the statement 
of this example asking if only some of the columns of the matrix can form a
basis for  then it will suffice that  
 Such a basis will consist of only m  independent columns of  A :  

Numerical example.  Let us consider the matrix   matrix  

(1.63)

It can be easily seen that hence, the first three columns of
A  are linearly dependent and they cannot form a basis for But columns

are independent since 

Therefore  is a basis for the space  but not the only
possible one. The reader is invited to check that  is also a
basis. A similar discussion can regard the rows of matrix A of (1.63): can the
three rows form a basis for the space  ?  Anyway, the reader can check that
the three rows are linearly independent ; but the condition 
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L  

is or is not satisfied ? ~

A final problem concerning the bases of a vector space regards the 

Changes of bases and coordinates 
As stated in the previous results (THEOREM 1.1, COROLLARY 1.3, ... ), a vector
space V admits several bases; in fact, it admits infinitely many bases. Indeed, if
a basis A  exists and each vector is scalar-multiplied by an
arbitrary non-zero scalar  then the new family of vectors  A ’ =

is still a basis of the space. And there exist not less
than  possibilities. 

Let   and   be two bases of the
space  V.  Any vector is a vector in L  Therefore a
unique n-vector of coordinates exists such that each  can be
linearly expressed in terms of basis A ; formally, 

  
(1.64)

The  n   equations in (1.64), in fact  n  unique linear expressions of the vectors
of the “new” basis B in terms of the initial (or “old”) basis A can be written
together, one under the other and also using the “matrix notations” for linear
combinations and linear expressions: see Eqs. (1.13) at page 5 and (1.21) at
page 7, respectively. To this end, let us write the scalar coefficients that occur
in  (1.64)  as a row vector (or a row of a matrix) : 

(1.65)

Equations (1.64) can be written one under the other, for 
resulting in 

(1.66)

Obviously, the matrix equation (1.66) is equivalent to the set of (explicit) vector
equations or equalities  
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(1.67)

or also to its (more synthetic) matrix expression 

                  (1.68)

Obviously, the two equations in (1.68) can be obtained from each other by
transposition, and the matrix    

(1.69)

is said to be the  transformation matrix from basis  A  to basis  B. 
The next remark needs a couple of notions regarding matrices to be recalled.

In fact, they were presented in  § 1.1. 
The rank of a matrix A 0 M m,n is the maximum number of its linearly

independent rows / columns. A square matrix  A  is invertible if there exists
another square matrix such that the identity matrix
of order n.  A square matrix A  (of order n) is invertible if and only if it is
nonsingular, what is equivalent to   

Remark 1.9.  The transformation matrix  T  which is involved in Eqs. (1.66) and
(1.68-69) is nonsingular, hence invertible. Indeed, let us assume that 

(1.70)
But both properties in  (1.70)  are equivalent to the linear dependence of the
rows (or columns) of matrix  T. This implies the existence of  n  scalars 

(1.71)
Obviously, 0  in (1.71) is the row zero vector in   Assume that there exists
(at least one scalar)  in this equation. Then it follows from Eq. (1.71) that
the i - th row of the transformation matrix can be linearly expressed in terms of
the other rows :  

 (1.72)
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Let us now consider a null linear combination of the n vectors
of basis B : 

 (1.73)

The first expression of  (1.68), taken to (1.73), gives the equation 

(1.74)

But  A  is a basis and its independence implies that the row of scalars that pre-
multiplies it in (1.74) should be the zero row vector :  This matrix-
form equation may be rewritten using the row-by-row structure of  T (see (1.69))
as 

(1.75)

This Eq. (1.75)  can be rewritten by transposing it : 

(1.76)

The last matrix equation in (1.76) can be written in terms of the column vectors
using expression (1.72) of row  

(1.77)

The system (1.77) is a homogeneous linear system of  n equations in the n
unknowns  But its rank is at most  since the i-th column of
its matrix is a linear combination of the other columns. Therefore it admits non-
zero solutions, and Eq. (1.73) thus holds for some what contradicts the
independence of (the vectors of) basis  B.  Hence the properties in (1.70) are
false and the transformation matrix  T  is nonsingular : 

T  is thus invertible.  The same conclusion can be derived using the columns of 
T  instead of its rows.  

This conclusion gives the ground for proving the next result which gives a
formula for changing the coordinates of a vector when the basis is changed. 

PROPOSITION 1.6.  Let  V  be a vector space over the field  F and  A B two
bases spanning V. If basis  A  is changed for  B  with the transformation matrix 
T  then  T  is invertible and the connection between the coordinates of a vector 
x 0  V  in the two bases is given by 
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                      (1.78)

Proof.  The connection between the two bases is expressed by (one of the) Eqs.
(1.68), with matrix-type notations. The non-singularity of the transformation
matrix  T  has been stated and proved in the earlier  Remark. The connection
(1.78) between the coordinates of vector  x  now easily follows if we use the
matrix form (1.21) of the expression of a vector in a basis, together with
connection  (1.68)  between the two bases.  

(1.79)

                                 (1.80)

The equality in (1.80) follows from the associativity of the matrix product; this
property also holds when the third factor is a column of vectors – the column
form of the basis A. But the first equation in (1.79), after }|, and the last
expression in  (1.80)  represent two linear expressions of the vector  x  in the
same basis  A. By the unicity of the coordinates, it follows that 

(1.81)

The equivalence in  (1.81)  holds by post-multiplying the first equation with the
inverse of the transformation matrix and & then & by transposing the two sides
of the equation thus obtained. 

(1.82)

The equations in (1.82), next to  | , have followed by the associativity of the
matrix product, with the definition of the inverse of a matrix: in this case, 

The equality of the rightmost to the leftmost side of (1.82) is just the transpose
form of the formula (1.78) in the statement. This completes the proof. 

Remarks 1.10.  The proof of this rather important result offers an example of the
usefulness of our matrix notations. The equivalent form of the connection
formula (1.78) is 

                              (1.78')

As regards the (somehow strange) notation that occurs in (1.78), that is
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it could be formally accepted in view of the rule of multiplication of powers. 

As an application of the formulas (1.78) / (11.78'), let us see how the
coordinates of a vector   in a given basis  B   can be effectively
found.  Let this basis be 

The vectors  are, in fact, column vectors in or in and
therefore  B  is a square matrix of order  n. Moreover, it is a nonsingular matrix
since its columns are linearly independent (see the definition of the rank given
earlier – at page 20). Let us also recall that the coordinates of a  vector 

 in the standard basis  E  of this space are identical to its
components. Hence such a vector may be written as 

 (1.83)

But the standard basis as a matrix is just the identity matrix
: see the structure of this basis in  Example 1.8, Eqs. (1.26-27)  – page 8.

Hence we may write 

(1.84)

The property of the transposing operator on the product of two matrices has
been here applied :  as well as the property of the identity
matrix (or of any diagonal matrix) ! the transposing operator leaves it
unchanged. If we compare equation (1.83) with (1.68), it is clear that the
transformation matrix from the standard basis  E  to the basis B is just 

It now follows from (1.83) with formula (1.78)  that 

                                    (1.85)

But this formula (1.85) shows that the (column vector of) the coordinates of
vector  X  in basis  B  are obtained from the solution to the matrix equation

(1.86)

In its turn, this equation is equivalent to a non-homogeneous linear system. 
Example 1.12. Let us consider, in the space a vector  X  and a basis B : 

(1.87)
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The matrix equation of  (1.86)  with the four vectors in  (1.87)  becomes 

(1.88)

The matrix  B  has  Hence Eq. (1.88) will have a unique
solution. This unicity theoretically follows from the unicity of the coordinates
of a vector in a (given) basis - PROPOSITION 1.2. But it also follows from the
properties of (non-homogeneous) linear systems, with the previous remark
following after Eq. (1.86). A square n-by-n nonhomogeneous system with non-
singular coefficient matrix has a unique solutions (as it is known from the
highschool). Such systems are sometimes said to be determined, and we all call
them Cramer-type systems. The linear system (equivalent to) Eq. (1.88) can be
solved using transformations on the rows of its augmented matrix (as it will
be explained, in more detail, in the next section), thus avoiding the effective
determination of the inverse : 

(1.88)

The column vector of the coordinates of vector  X  in basis  B  means that we can
write that 

(1.89)

This linear expression of (1.89) can be checked by the reader, with the data in
(1.87). ~

The next example illustrates the change of bases and coordinates, in the real
Euclidean space. 

Example 1.13. Check that the following two families of vectors are bases in
space  and find the transformation matrix  T  from  A  to  B.  

(1.90)
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(1.91)

The two families  A and  B  are bases since both of them consist of three
vectors (=  the dimension of ) and their determinants are non-zero: 

The matrix equation connecting the three matrices  A, B and  T  is either of the
two equations in (1.68) - page 20. If we take the first of them,  

(1.92)
the matrices  A  and  B  are known from (1.90) & (1.91) while  T is the unknown
matrix, to be found. With the above data, Eq. (1.92) becomes 

(1.93)

In order to get the transformation matrix , the two sides of Eq. (1.93) should be
post-multiplied - that is multiplied at right - by the inverse of This inverse
can be determined by a formula known from the highschool (involving the
“adjugate” or cofactor matrix of  A and its determinant ), but a more
efficient method consists in using transformations on the rows of a block matrix
of size 3-by-6, similar to those applied in the former example. But an even easier
way to obtain T avoids the prior determination of To this end it is easier
to skip to the second equation in (1.68), that is 

(1.94)
The matrix product in the r.h.s. of Eq. (1.94) can be calculated by a
transformation method applied on the rows of a block matrix of size 3-by-6,  as
earlier mentioned. This method is called Gauss-Jordan or Gaussian elimination,
and it was presented and explained in the former section,  § 1.2. However, we
are going to employ it to this example, after a brief recalling. Starting from the
block matrix the rows of this  3-by-6 matrix are transformed in the way -
known from the highschool - used to simplify the calculation of determinants:
a row may be multiplied or divided by a non-zero number, two rows may be
interchanged, or a row multiplied by a (non-zero) number may be added to
another row. The aim is to obtain the identity matrix, in our case  instead of
the left block When this aim is reached, the desired matrix of Eq. (1.94) will
appear as the right block, instead of matrix  B. Hence, the scheme of these
transformations is  
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(1.95)

With the data in  (1.90-91)  we have  

     (1.96)

It follows from the last matrix in (1.96) that the transpose of the transformation
matrix is 

(1.97)

For a better understanding of this result, let us explicitly write the connection
between the vectors of basis and the ones of basis B, corresponding to the
transformation matrix of  (1.97): 

(1.98)

We are going to extend this example by considering a vector   expressed
in basis  and looking for its coordinates in the “new” basis  of (1.91). Let
us consider the vector 

(1.99)

  (1.99)  |     (1.100)

The coordinates of  in the “new” basis  can be obtained by applying
formula (1.78). The expression of   means that the vector of the “new”
coordinates is the solution to the matrix equation in (1.81), 

(1.101)

The last matrix equation in Eq. (1.101) is equivalent to a non-homogeneous
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linear system which can be solved by the Gaussian elimination, as in Example
1.12. The transformation scheme is  

(1.102)

From  (1.97)  and  (1.100)  –  the first matrix  –  we have 

 

(1.103)

Hence 

(1.104)

The result in (1.104) can be checked as follows: the linear expression (1.99)  of 
  in basis   leads to the vector   as an element in : 

(1.105)

If we pass to the “new” basis  the expression (1.104) with the vectors in
(1.91) leads to 

 (1.106)

Hence, the linear expressions in (1.105) & (1.106) represent the same vector
 ~

The example is over. However, let us see another way to check that the
coordinates and the expression of    in basis   that occur in (1.104) are / is
correct. This method can be employed even for such problems formulated in a
general vector space and not necessarily in It simply consists in taking the
vectors , expressed in basis  as in (1.98), what should give back the
expression (1.99) of   in the “initial” basis : 
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Hence, expression  (1.99)  in basis  of    has been retrieved.  

§ 1.1 -A  VECTOR SPACES, BASES AND COORDINATES - APPLICATIONS

  Study the linear dependence / independence of the four vectors in   1-A.1 
     given below, for the real values of parameter  

   Find the coordinates   of in the basis  1-A.2 

       and then in basis  with   

   Find a linear expression of the vector  in terms of  1-A.3 

     Is it unique ? 

    Show that the space   of the polynomials over the field  ú  1-A.4 
     can be spanned by the set of "polynomial vectors" consisting of 

  
    and find the coordinates of    and  in this basis. 

  Check that the column vectors of matrix  1-A.5 
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     are linearly dependent, find a linear dependence relation among them
and  determine the dimension of and a basis in the vector space spanned
by the four columns 
  

  Determine the real values of parameter  m  such that vector   1-A.6 
    can be linearly expressed in terms of 

 and  

        Then find the coordinates  of  

  Find a basis in the matrix space  M , so that the coordinates   1-A.7
         of any matrix   coincide with its entries. 

   Is it true that if   are linearly dependent, then the   1-A.8
          vectors   

   are linearly dependent, too ?  
(Hint: Assume some combination  and find 
              which  are possible). 

  Decide the dependence or independence of   1-A.9 

(a)  

(b)  for any vectors  

(c)  for any real
numbers 

   In the space of 2-by-2 matrices, find a basis for the subset of matrices  1-A.10 
 whose row sums and column sums are equal. Find five linearly 
  independent  3-by-3  matrices with this property. 

  Decide whether it is True or False : 1-A.11 
   (a)  If the columns of  are linearly independent, then equation   
        has exactly one solution for any  
    (b)  A 5-by-7 matrix never has linearly independent columns. 
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  Check which one(s) of the polynomials   are (is) in the  1-A.12 
  space spanned by 

 

  A vector space is spanned by a basis  A, that is  V = L find the  1-A.13 
coordinates of  

    in another basis    where  

and then check the result. 

Hint: The method employed in the latest example (Example 1.13 at page 
25) can be here applied. 

  The space of polynomials of order 3, that is can be   1-A.14 
 spanned by its standard basis

  

Check that the family 

is also a basis for this space. Find the transformation matrix from  E  to  B 
and find the coordinates of the polynomial  in both these 
bases.  Check the coordinates in basis B . 
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§ 2.2  SUBSPACES OF VECTOR SPACES 

The notion of algebraic structure was met in the highschool, together with the
one of substructure. For instance, a group may admit one or several subgroups.
Moreover, a rather general structure may admit substructures with richer
properties. As a typical example, the ring (with identity) of the square matrices 
M admits the subring of nonsingular matrices, but the latter one
(augmented with the zero matrix 0) is a non-commutative field, since any
nonsingular matrix is invertible (as we saw in  § 1.2). Since the basic structure
of the LINEAR ALGEBRA is the vector (or linear) space, it is therefore natural to
see what would mean a substructure of a vector space. 

Definition 2.1.  Let  V  be a vector space over a field  F. A subset  is a
subspace of  V  if  W  itself is a vector space over the same field (under the vector
sum and the multiplication of vectors by scalars in  F ). 

It follows that a simple subset   is not necessarily a subspace. The
ten axioms of  Def. 1.1 should be satisfied on too. However, let
us remark that it suffices only two of the ten axioms to be satisfied, namely

 and , as stated in  

PROPOSITION 2.1.   with    is a subspace of  V   
    and 

  
Proof.  We have to show that the other eight axioms of Def. 1.1 are also satisfied
on  W. But some of them are "inherited" from the corresponding properties of
the sum and multiplication by scalars satisfied on the entire space 

 : this is the case with the associativity and commutativity
of the vector sum, as well as with axioms   and

 The only axioms which have to be effectively checked are  and 
 since it would be (theoretically) possible that the zero vector  be

no more in the subset  similarly, it would also be possible that the
negative  be no more in    for some  But, taking    for 

 and applying the consequence  of  PROPOSITION 1.1 (which
holds for   hence also for   , we derive from

 that   for As regards the defining property
of the negative  it is "inherited" from  V. As
regards the membership  it readily follows from  for 
and from with  replaced by  but  
hence  This completes the proof. 
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In other words, a subset  W   of a vector space  V   is a subspace of  V   if
and only if  W  is closed  (or stable) under the two linear operations: the sum of
vectors and the multiplication of vectors by scalars. Therefore,  Definition 3.1
may be replaced by a "minimal" and equivalent one : 

Definition 2.1'. (Subspaces)  Let  V   be a vector space over a field  F.  A
subset   is a subspace of  V  if axioms  are satisfied on  W. 



If  Definition 2.1'  (hence  Definition 2.1 ) is satisfied by a subset  , we
use the special notation 

  (2.1)

This notation should be read "W  is included as a subspace in the vector space 
V ". 
Remark 2.1.  Conditions  for checking whether a subset 
is a subspace of  V  can be replaced by a single condition : 

          (2.2)

Indeed, (2.2)  for  and applying 
, too. (2.2)   for   and  replaced by  w  (also

applying consequence  in  PROPOSITION 1.1 ).  
Conversely, if  Definition 2.1 (which is equivalent to P. 2.1)  is satisfied on

W, then 
   

by  and  the equivalence is thus proved. 
Hence, the preceding two definitions may be replaced by 

Definition 2.1".  Let  V  be a vector space over a field  F.  A subset  is
a subspace of  V  iff (if and only if) the membership in  (2.2)  is satisfied. 

In fact, the property in  (2.2)  implies the axioms  & , but the
scalars and the vectors are subscripted. The property in  (2.2)  means that 
  

A subset of a vector space is a subspace iff it is closed under arbitrary
linear combinations (of two vectors in that subset).  

This latter characterization of a vector subspace admits a generalization, given
by 
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PROPOSITION 2.2.  If    then 

(2.3)

and conversely. 

Proof (by induction /m).  Let us denote property  (2.3)  by   is just
(2.2). Let us assume that   is satisfied on  W.  Then  

       

 and  

Hence  is satisfied, and  thus holds for   The converse
implication is quite obvious, for  with  Definition 2.1".  

Before continuing with other definitions and results involving the subspaces,
let us see a couple of examples of subspaces. In general, a subspace can be
defined by specifying one or more properties of the elements (vectors) in the
vector space it is a part of. But a subspace   can also be characterized
by identifying a basis that spans it :  L  Implicitly, its dimension can
also be determined. 

Example 2.1.  Let   be the subset of the vectors  X  with the first
component , that is 

  (2.4)

It is clear that   and it easy to check condition (2.2) for any two vectors 
 since the first component of  will also be hence

 A basis spanning  W  consists of   the vectors of
the standard basis  E  of   except the first one. Hence, the dimension of  W 
is   This example may be obviously extended by defining  W  as the
subset of vectors  X   with the components at certain (but fixed) positions  

~

Example 2.2.  Let us consider a subset of the space of square matrices of order
2,  M  defined as  
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.  

It is easy to see that  W  is spanned by the basis consisting of three matrices,
namely

 

since   Hence,  ~

Example 2.3.  The set of polynomials over ú, , whose terms with
odd powers are  = 0, is a subspace of   The reader is invited to prove
this assertion and show that the dimension of this subspace equals   
where  denotes the integer part of the real number  ~

A rather general and important example of subspace is given in 

PROPOSITION 2.3.   If  A is a family of vectors in the vector
space  V, then the set spanned by  A ,  L (A )  is a subspace of  V.  

Proof. Let us consider two arbitrary scalars   and two vectors in the
set  L (  )  : 

(2.5)

A linear combination with the two vectors in  (2.5) gives

           (2.6)

it follows from (2.6) that any linear combination of two vectors in  L (A ) is also
in this set, hence  L (A )  is a subspace of  V. 

Remark 2.2.  It follows from the proof of  PROPOSITION 3.1  that  any subspace
of a vector space V  includes the zero vector  0. The set consisting of this zero
vector, that is is just the "least" subspace of any vector space. Hence, any
subspace  W  satisfies the double inclusion 

 (2.7)

Thus, any vector space  V  admits  two improper subspaces  :   the zero subspace
 and the space  V  itself. We denote by   the set of all subspaces

of  V. The fact that the trivial subspace  is actually a subspace can be easily
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verified according to Def.3.1' : according to ; 
according to  in  PROPOSITION 2.1.

As regards the dimension of a subspace, let us state 

PROPOSITION 2.3.  If    then  (2.8)

Proof.  In the trivial case when   the inequality in (2.8) obviously
becomes an equality:   If    (W  is a proper subspace
of  V ), let us denote    Assume that  and let

 be a basis of  W.  But it follows from the hypothesis that 
B  is also a basis in  V ;  hence, any vector    can be linearly expressed in
terms of  B : 

   

Thus we get the inclusion  what contradicts  ;  therefore
 is impossible and it follows that   if  . The

proof is over. 

Several operations can be defined on the subspaces of a vector space  V.
Since the subspaces are subsets (parts) of  V, the set-theoretic operations as the
set union and set intersection are naturally possible in   . But another
(specific) operation can also be defined : 

Definition 2.2.  Let   Then 

      

 



Operations (ii) and (iii) should not be explained. As regards (i), the sum of two
subspaces is simply the sets of sums of two vectors, each of them in one of the
subspaces, respectively. The results of these three operations with subspaces
could be a subspace or merely a subset of  V. The problem is established in 

PROPOSITION 2.4.   If  then : 
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Proofs.  (i)  Let us take two arbitrary scalars  λ , μ  in the field  F and two
vectors in  and The corresponding linear
combination thereof is 

             

since   and  Definition 2.1" gives the membership to 
of the vectors between parentheses in the rightmost side of the above equation.
Def. 2.1  of a vector subspace has also been involved. 

 (ii)  Let us take two arbitrary scalars  and two vectors in the
intersection :  Since 

 it follows that 
  

According to Definition 2.1", property (ii) holds, too. The proof is over.
 (iii)  The union of two subspaces  of  a vector space V  is clearly a
subset of its, but it is not necessarily a subspace. Let us take two vectors in

 namely   and (provided these two set
differences are not empty). Obviously,  
if   were a subspace. But  and   hence the sum of the
two vectors could be not in the union. A simple example would better prove this
possibility. Let us take two subspaces of   namely 

 

it follows that their union  consists of vectors with at least one
component  But let us now consider 

We clearly have    with  

Hence the sum  as it should be if  were a
subspace.   

Remark 2.2.  Certainly, the three operations introduced by  Definition 2.2  can
be extended to sums,  intersections and unions of several subspaces, and the
properties of  PROPOSITION 3.4  still hold : 

PROPOSITION  2.5.   If   then : 
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 (i)

       (ii)

(iii)

The proofs of these properties follow by induction on   (if  I  is
a finite family of indices) and from  PROPOSITION 2.4  ; we do not give them
here (leaving them as exercises to the reader). As regards property (iii) above,
it has be understood as in the proof of PROPOSITION 2.4 :  the union of several
subspaces is not necessarily a subspace of  V, but only a subset. It is, however,
possible that the union of certain particular subspaces gives a subspace. 

The sum of two subspaces introduced in Def. 2.2 - (i)  gives rise to an
interesting problem: a (fixed) vector may be obviously written,
by definition, as 

 with   (2.9)

but when is a decomposition like (3.9) unique ?  The answer is given by 

PROPOSITION 2.6. If  then the decomposition 
 with   is unique if and only if  

(2.10)

Proof.  Assume that decomposition (2.9) is unique but ! however !
 Let us take a vector   Then we obtain

two different decompositions of x, namely 
  

the latter membership follows from  But
 hence   and   Thus, decomposition (2.9) would

be not unique ! 

Let us now assume that condition (2.10) holds, but the decomposition
(2.9) would be not unique :  

 (2.11)

It follows from the double decomposition of  x  in  (2.11)  that 

(2.11')

since both  and  are subspaces of  .  But the membership in (2.11') and
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(2.10) imply that   Hence the
decomposition of  x  in  (3.10)  is ! in fact ! unique. 

Definition 2.3.  Let   If condition  (2.10)  satisfied, then the
sum of the two subspaces is said to be  direct  and it is denoted by  r : 

(2.12)

The direct sum of several subspaces may also be defined : 

(2.13)

If  and   then the subspaces  are said
to be supplementary (with respect to  V  ). 
 An interesting relation between the dimensions of and 

 is given by 

THEOREM 2.1.  (Grassmann)   If  then 

  (2.14)

Proof.  Let 
 (2.15)

and let   be a basis. We complete  B  up to a
basis of  :  Since   too,
it can also be completed up to a basis  of  

Let us show that the family 

(2.16)

is a basis of   For any    we have the linear
expressions of   in the two bases of   : 

 (2.17)

(2.18)

It follows from  (2.17)  &  (2.18)  that 

Hence  L  and  of  (2.16)  is thus a spanning family for 
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Let us show that   is linearly independent. The defining equation is 

   (2.19)

If   

then      since  is independent, and  (2.19) 
with the next equations imply 

because  is also independent as a subfamily of basis   Let us
now assume that  
Since   and Eq. (2.19)  | 

|  or 

 , 

it  follows that  too. Hence

  

From this expression of   x  and from the former expression of  ! x  we get

     (in view of (2.15)) 

      (since is independent)

, 
what contradicts the assumption that   
Therefore   is a basis in  

 (2.14).


Remark 2.3.  If the sum  is direct, then ! according to (2.12) and to
the obvious property   !  we get the equation 

 (2.20)
We close this section with some more examples of subspaces. The first of the

next examples is very often met in applications :  

Example 2.4.   If   is a homogeneous system with nontrivial solutions,
that is (see § 1.2),  then its set of solutions  S  is a subspace of 

This readily follows from (2.32) in  Remark 2.4 of § 1.2, from definition
(2.31) of the set   S  and from  Def. 3.1" of a subspace : 
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Moreover, its dimension equals  since  !  according to (2.43) in § 1.2   ! 
any solution   X  of system (2.31) depends on   parameters and therefore 
S  is linearly spanned by the  columns of the block   ~

Example 2.5.  If  M  then the row (sub)space  of  A  is the set
spanned by its rows    while the column (sub)space  of  A  is the
set spanned by its columns  Let us denote these sets by 

 respectively. The fact that  

(2.21)

immediately follows from PROPOSITION 3.3. The dimension of both these
subspaces is obviously equal to the rank of the matrix  A ; formally 

 L   L  & 

(2.22)
~

With reference to the preceding example, the set of solutions of a homogeneous
system may be written as 

  where   (2.23)

Let us also illustrate the row and column (sub)spaces of a matrix  A, and also
the two operations on subspaces giving a subspace (the sum and the
intersection) by a numerical example : 
Example 2.6.  Given the matrix  

 (2.24)

find a basis spanning each of the subspaces and
respectively. Then write the general form of a vector in each of them. 

       In order to find the required bases in the subspaces spanned by the rows
and (respectively) the columns of matrix  A, let us recall that any such a basis
will consist of r rows / columns, with Moreover, the method of
RANK PRESERVING TRANSFORMATIONS  (see (2.36) in  § 1.2 ) gives the possibility
to identify  r independent rows and columns giving these bases: they will be the
rows / columns passing through the triangular block   Therefore, we have
to transform the matrix in (2.24) until reaching a quasi-triangular form : 
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The quasi-triangular form is just the third matrix in the chain above, and it is a
triangular matrix of order  3 ; it follows that the rank of  A is  = 3. Moreover, the
rows and the columns corresponding to this block 

(2.25)

give two possible bases : 

 (3.26)

Therefore, the general form of a vector in  is  

  

The general form of a vector in  is 

  

The last (quasi-diagonal) matrix in the above chain gives the expression of the
last two columns in (2.25) in the corresponding basis of (2.26), since the
transformations have been applied on the rows only : 

 

~

The preceding example illustrates a way to establish the membership of
some vector in   to the subspace spanned by other vectors in the same space.
In fact, in the spanning vectors are   and the candidate
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vectors for the membership to 

L   are   (2.27)

(all of them written as columns), then this problem is equivalent to the
simultaneous solution of nonhomogeneous linear systems with the same
coefficient matrix,  and with the matrix of the free terms 

 This latter problem was discussed (in some detail) in  §
1.2 - pages 50-51. Hence, the problem of deciding whether 

L   for   (2.28)

or not can be reduced to the study and solution of several systems with the
augmented matrix  If   (what is possible only for

then the answer is always positive: the multiple solution of the system 

(2.29)
will give ! on the columns of   ! the (coefficients of the)
linear expression of the vectors  in terms of  This
expression will be unique iff (that is,  }| ) But, in this case, A
is just a basis for the space . The more interesting case is  
In this situation (see § 1.2 ) some of vectors  may be in  W  of 
(2.28)  while others may be outside, that is in   But the expressions of
the vectors inside  W  will be not unique: they will depend on  parameters
(for  Similar problems can occur when it is required
to find a basis spanning the sum or the intersection of two subspaces. 

Example 2.7. Let us consider two subspaces   of   respectively
spanned by  

(2.30)

The general expression of a vector in the sum  is  

  

(2.31)
It is obvious that not all of the four vector in (2.30-31) are independent since
their number is   and it can also be seen that  
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(2.32)

Moreover, the dependence relations (2.32)  |   or   are
bases for  |   It is also clear that the dimensions of
the two subspaces are both = 2 since the generating families in (2.30) are
independent. 

As regards the intersection of the two subspaces, we have to look for a
vector 

(2.33)
This (latter) vector equation (2.33) is – in fact – a homogeneous system in the
unknown vector  The (coefficient) matrix of this system is 

 

               

| (for   

(2.34)

We have thus retrieved, in view of the rightmost side of (2.34), the second
expression of a vector Y  in the intersection written in (2.33), what means that 

L   (2.35)
But a possibility for checking the general expression of (2.34) of a vector in the
intersection subspaces is available if we use the solution of the homogeneous
system that has led to  (3.34), with the vectors of basis  B : 
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Therefore, the intersection has been found to be equal to the second subspace W,
that is  

(2.36)
But it can be easily checked that the converse inclusion to that of (2.36) also
holds. This follows from the fact that the two bases can be replaced by each
other. Indeed, 

(2.32)  |   L  L   
But the same relationship in (2.32) allows to express the vectors of  A  in terms
of (those in) B : 

(2.32)  |  

Hence   This is a rather strange case, but
 it follows, from the above discussion, that Grassmann’s formula is satisfied by
these two subspaces : 

~
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§ 2.2-A  SUBSPACES OF VECTOR SPACES - APPLICATIONS  

There are considered, in the space the vectors 

            

Which is   with  spanned by Choose a basis
in  W  and express the other vectors in it.  

Determine a basis of the subspace of spanned by the vectors 

      

Check which of the polynomials and belong to the 
subspace generated by

 
   Then find a linear expression for that one(s) which are in this subspace.  

Prove that the subsets (of the corresponding vector spaces) given 
in Examples 2.4 thru 2.6 (in  § 2.2) are actually subspaces, and 
find bases spanning them. 

Determine and a basis for each of the
solution (sub)spaces of the homogeneous systems   

  

    The subspaces are respectively spanned by 

A
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and  B  

Find a basis in each of the subspaces

Find a basis in each of  where   

Show that the set of functions 
       
is a subspace of the space of real functions  F  

Check whether the family of matrices  

      A : 

is linearly dependent or independent, and find a basis in the 
subspace of spanned by this family. 

Let us consider a subset of   defined by 

         

         Show that  is a subspace of , find its dimension and a 
basis spanning it. 

Let  be the subset of  M  of matrices of the form  

Show that M and identify a basis of  

Determine the dimensions of the sum and intersection spanned 
by 

A  and   B  

respectively. 



2-A.2  APPLICATIONS TO SUBSPACES OF VECTOR SPACES  47

Show that the family of functions   

F

is linearly independent. What about 

Establish which of the following subsets of (the
space of  polynomials of degree  # n ) are vector subspaces: 

(a)       

(b)       

(c)       

(d)  

Determine so that the dimension of the subspace 
spanned by the matrices  

    

be minimum (the least possible). 

Two subspaces are respectively spanned by 
             and

Find such that Then find the sum 
decomposition of 

        


