THE RANK OF A MATRIX

1 Find the rank of the following matrices

1. $A=\left(\begin{array}{ccccc}2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2\end{array}\right)$, 2. $A=\left(\begin{array}{ccccc}2 & 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & 1 & 2 \\ 3 & 3 & -3 & -3 & 4\end{array}\right)$.

2 Find $a \in \mathbb{R}$ so that the matrix $A=\left(\begin{array}{cccc}a+1 & 3 & 1 & 2 \\ -1 & 1 & -1 & 1 \\ a-2 & -2 & 2 & -2\end{array}\right)$ has rank 2.
3 Discuss the rank of the matrix $A=\left(\begin{array}{ccc}1+a & a & a \\ a & 1+a & a \\ a & a & 1+a\end{array}\right)$ with respect to the values of $a \in \mathbb{R}$.
4 Find $a \in \mathbb{R}$ so that the matrix $A=\left(\begin{array}{cccc}a-1 & 1 & a & a-2 \\ 1 & 2 a & -1 & a+3 \\ -a+3 & 4 a-1 & -a-2 & a+8\end{array}\right)$ has maximal rank.

Hint: Prove first that $\operatorname{rank}(A) \geq 2$.

5 Let $A \in M_{2}(\mathbb{C})$ be such that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$. Prove that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{n}\right)$ for all $n \in \mathbb{N}^{*}$.

Hint: Analyze the cases $\operatorname{rank} A=2, \operatorname{rank} A=1$ and $\operatorname{rank} A=0$ separately.
6 Let $A, B \in M_{n}(\mathbb{C})$ such that $\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{2}\right), \operatorname{rank}(B A)=\operatorname{rank}\left((B A)^{2}\right)$. Prove that $\operatorname{rank}(A B)=\operatorname{rank}(B A)$.

$$
\text { Hint: } \operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{2}\right)=\operatorname{rank}(A B A B)=\operatorname{rank}(A \cdot B A \cdot B) \leq \ldots
$$

7 Let $A \in M_{3,2}(\mathbb{C})$ and $B \in M_{2,3}(\mathbb{C})$ such that $A B=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 1\end{array}\right)$. Prove that $\operatorname{rank}(B A)=$
2.

8 If $A \in M_{n+1, n}(\mathbb{C})$, then $\operatorname{det}\left(A A^{t}\right)=0$.

THE INVERSE OF A MATRIX

9 Prove that the matrix $A=\left(\begin{array}{ccc}1 & -a & b \\ a & 1 & -c \\ -b & c & 1\end{array}\right)$ is invertible for any $a, b, c \in \mathbb{R}$ and find its inverse.

10 Find the inverse of the following matrices

1. $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right)$,
2. $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ -1 & 1 & -3 \\ 1 & 5 & 5\end{array}\right)$,
3. $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 2\end{array}\right)$,
4. $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right)$.

11 Prove that $A=\left(\begin{array}{cccc}2 & 2 & 3 & 1 \\ 1 & -2 & -3 & 2 \\ 4 & -2 & -3 & 5 \\ 1 & 3 & 1 & 1\end{array}\right)$ is not invertible.

Hint: Use Gauss-Jordan elimination.
12 Find the inverse for the matrices $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right), B=\left(\begin{array}{llll}2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right)$. Use

1. Gauss-Jordan elimination
2. block writing

$$
\begin{array}{r}
\text { Hint: For } C=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text {, one sees that } C^{2}=I_{2} \text {. Also, } A=\left(\begin{array}{cc}
C & O_{2} \\
O_{2} & C
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
2 I_{2} & C \\
C & 2 I_{2}
\end{array}\right) . \\
\text { Hint: Let } D=\left(\begin{array}{cc}
2 I_{2} & -C \\
-C & 2 I_{2}
\end{array}\right) \text {. Find } A^{2} \text { and } B D .
\end{array}
$$

13 Let $A \in M_{m}(\mathbb{C})$, A invertible, $B \in M_{m, n}(\mathbb{C}), C \in M_{n, m}(\mathbb{C}), D \in M_{n, n}(\mathbb{C})$. Prove that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det} A \cdot \operatorname{det}\left(D-C A^{-1} B\right)
$$

14 Let $A=\left(\begin{array}{llc}2 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 10\end{array}\right)$.

1. Prove that $A^{2}+15 I_{3}=16 A$.
2. From the above equality, prove that A is invertible and find A^{-1}.

15 Let $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$ and $B=A-I_{4}$.

1. Prove that $\left(I_{4}-A\right)\left(I_{4}+A+A^{2}+A^{3}\right)=I_{4}$.
2. Prove that B is invertible and find B^{-1}.
