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Abstract An approximation theory for semilinear evolution equations is treated in terms
of convergence theorems of nonlinear operator semigroups and three types of fundamental
results are established. For a semilinear evolution problem in a general Banach space, a se-
quence of approximate evolution problems is formulated and so-called consistency and stabil-
ity conditions for the approximate semilinear equations as well as the associated semigroups
are introduced. Under these conditions, semilinear versions of the Lax equivalence theorem
and Neveu-Trotter-Kato theorems are given. Also, in virtue of a characterization theorem
of locally Lipschitzian semigroups, an approximation-solvability theorem is obtained.

1 Introduction

This paper is concerned with approximation theorems for nonlinear semigroups in a
general Banach space (X, | · |) which provide mild solutions to semilinear problems of the
form

(SP) (d/dt) u (t) = (A + B) u (t) , t > 0; u (0) = x ∈ D.

Here A is assumed to be the generator of a (C0)-semigroup T = {T (t) ; t ≥ 0} and B a
nonlinear operator from a subset D of X into X. We consider a semigroup S = {S(t); t ≥ 0}
of nonlinear operators from D into itself which provides mild solutions to (SP) in the sense
that given an initial-value x ∈ D the function u(t) ≡ S(t)x satisfies the integral equation

S(t)x = T (t)x +

∫ t

0

T (t− s)BS(s)xds

for t ≥ 0. This means that (SP) admits a global mild solution for each x ∈ D. In this
paper we employ a lower semicontinuous functional ϕ : X → [0,∞] to restrict the growth of
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the mild solutions and continuity of the operators B and S(t). In what follows, we permit
ourselves the common abbreviation, an l.s.c. functional, in referring a lower semicontinuous
functional. It is then assumed that D ⊂ D(ϕ) = {x ∈ X; ϕ(x) < ∞}, and that B is con-
tinuous on each level set Dα = {x ∈ X; ϕ(x) ≤ α}, α ≥ 0. Moreover, the functional ϕ is
assumed to restrict the growth of the mild solutions u(·) to (SP) in the sense that ϕ(u(t))
enjoys an exponential growth condition of the form

ϕ(u(t)) ≤ eat(ϕ(x) + bt)

for t ≥ 0 and some nonnegative constants a and b. The existence of a semigroup S as
mentioned above means the global solvability of (SP).

In this paper we think of the following two cases. The first case is the case where we can
formulate a system of approximate semilinear evolution problems

(SP; n) (d/dt) un (t) = (An + Bn) un (t) , t > 0; un (0) = xn ∈ Dn

and assume that the semilinear problems (SP; n) are well-posed in the sense that for each n
there exists one and only one semigroup Sn = {Sn(t); t ≥ 0} of nonlinear operators from Dn

into itself which provides mild solutions to (SP; n). In this case it is natural to investigate
general conditions under which the approximate semigroup Sn converges to the semigroup
S associated with the original problem (SP). We here make an attempt to formulate appro-
priate consistency and stability conditions for {An + Bn} and {Sn} and establish semilinear
versions of the Lax equivalence theorem and Neveu-Trotter-Kato theorem. The semilinear
Lax equivalence theorem is new and the semilinear Neveu-Trotter-Kato theorem extends the
convergence theorem due to Goldstein et al. [4]. The second case is the case in which it is
not straightforward to specify the principal part of A + B and treat (SP) through the direct
application of the generation theorem. Such case may be considered for semilinear operators
appearing for instance in Navier-Stokes equations.

In this case it may be natural to treat (SP) via an appropriate system of approximate
evolution problems (SP;n) as well as the associated approximate semigroups Sn. For this
approach we formulate appropriate consistency condition for An + Bn and stability condi-
tions for Sn and apply a characterization theorem for locally Lipschitzian semigroups to an
approximation-solvability theorem.

This paper is organized as follows: Section 2 contains some basic results on mild solutions
to semilinear problems which were established in [12] and a characterization theorem estab-
lished in [1]. In Section 3, basic conditions (C), (S), (LQD), (RC) and (EC) are introduced
and the main results are stated along with remarks. In Section 4, equicontinuity results for
approximating operators are prepared and then the local uniformity of the subtangential
condition is established. Section 5 contains our first main result. In Section 6, a semilinear
version of Neveu-Trotter-Kato theorem for locally Lipschitzian semigroups is given under
convexity conditions for Dn and ϕn. Finally, in Section 7, the approximation-solvability of
(SP) is discussed and the proof of our third main result is obtained.

2 Semilinear evolution equations and semigroups

Let (X, |·|) be a real Banach space. The dual space of X is denoted by X∗. For x ∈ X
and f ∈ X∗, the value of f at x is denoted by 〈x, f〉. The duality mapping of X is the
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function F : X → 2X∗
defined by Fx =

{
f ∈ X∗; 〈x, f〉 = |x|2 = ‖f‖2}. Given a pair x, y in

X, we define the upper and lower semiinner products 〈y, x〉s, 〈y, x〉i by the supremum and
infimum of the set {〈y, f〉 , f ∈ Fx}, respectively.

Let D be a subset of X and ϕ : X → [0,∞] a l.s.c. functional on X such that D ⊂
D (ϕ) = {x ∈ X; ϕ (x) < ∞}. We denote by Dα = {x ∈ D; ϕ (x) ≤ α} a generic level set of
D. A nonlinear operator B : D ⊂ X → X is said to be locally quasidissipative (respectively
strongly locally quasidissipative) on D(B) with respect to ϕ if for each α ≥ 0 there exists
ωα ∈ R such that

〈Bx−By, x− y〉i ≤ ωα|x− y|2 for x, y ∈ Dα,

respectively
〈Bx−By, x− y〉s ≤ ωα|x− y|2 for x, y ∈ Dα.

By a locally Lipschitzian semigroup on D with respect to ϕ is meant a one-parameter
family S = {S(t); t ≥ 0} of (possibly nonlinear) operators from D into itself which satisfies
the following three conditions below:

(S1) For x ∈ D and s, t ≥ 0, S (t) S (s) x = S (t + s) x , S (0) x = x.

(S2) For x ∈ D, S (·) x ∈ C ([0,∞) ; X) .

(S3) For each α ≥ 0 and τ > 0 there is ω = ω (α, τ) ∈ R such that

|S (t) x− S (t) y| ≤ eωt |x− y|

for x, y ∈ Dα and t ∈ [0, τ ].

We consider the semilinear problem

(SP) u′ (t) = (A + B) u (t) , t > 0; u (0) = x ∈ D,

and we assume the following hypotheses on A, B and D:

(A) A : D(A) ⊂ X → X generates a (C0)-semigroup T = {T (t); t ≥ 0} on X such that
|T (t)x| ≤ eωt|x| for x ∈ X, t ≥ 0 and some ω ∈ R.

(B) The level set Dα is closed for each α ≥ 0 and B : D ⊂ X → X is continuous on each
Dα.

The semilinear problem (SP) may sometimes not have strong solutions and the variation
of constants formula is employed to obtain solutions in a generalized sense. It is then said
that a function u(·) ∈ C([0,∞); X) is a mild solution to (SP) if u(t) ∈ D for t ≥ 0,
Bu(·) ∈ C([0,∞); X) and the integral equation

u(t) = T (t)x +

∫ t

0

T (t− s)Bu(s)ds

is satisfied for each t ≥ 0.
In this paper we are concerned with the case in which (SP) is well-posed in the sense of

semigroups. We say that a semigroup S is associated with (SP), if it provides mild solutions
to (SP) in the sense that for each x ∈ D the function u(·) = S(·)x is a mild solution to (SP).

In this setting the following theorem, which was proved in [1], is valid.
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Theorem 2.1. Let a, b ≥ 0 and suppose that (A)and (B) hold. Then the following statements
are equivalent:

(I)There is a nonlinear semigroup S = {S(t); t ≥ 0} on D satisfying the following properties:

(I.1) S(t)x = T (t)x +
∫ t

0
T (t− s)BS(s)x ds for t ≥ 0 and x ∈ D.

(I.2) For α > 0 and τ > 0 there is ω = ω(α, τ) ∈ R such that

|S(t)x− S(t)y| ≤ eω(α,τ)t|x− y|

for x, y ∈ Dα and t ∈ [0, τ ].

(I.3) ϕ(S(t)x) ≤ eat(ϕ(x) + bt) for x ∈ D and t ≥ 0.

(II)The semilinear operator A+B satisfies the explicit subtangential condition and semilin-
ear stability condition stated below:

(II.1) For x ∈ D and ε > 0 there is (h, xh) ∈ (0, ε]×D such that

(1/h)|T (h)x + hBx− xh| ≤ ε and ϕ(xh) ≤ eah(ϕ(x) + (b + ε)h).

(II.2) For α > 0 there is ωα ∈ R such that

lim
h↓0

(1/h)[|T (h)(x− y) + h(Bx−By)| − |x− y|] ≤ ωα|x− y|

for x, y ∈ Dα.

Moreover, if the subset D and the functional ϕ are assumed to be convex, then (I), (II) and
the following statements are equivalent:

(III)The semilinear operator A+B satisfies the following density condition, quasidissipativ-
ity condition and range condition:

(III.1) The domain D(A + B) = D(A) ∩D is dense in D.

(III.2) For α >0 there is ωα ∈ R such that

〈(A + B)x− (A + B)y, x− y〉i ≤ ωα|x− y|2

for each x, y ∈ D(A) ∩Dα.

(III.3) For α > 0 there is λ0 = λ0(α) ∈ (0, 1/a) such that for each x ∈ Dα and
λ ∈ (0, λ0) there is xλ ∈ D(A) ∩D satisfying

xλ − λ(A + B)xλ = x and ϕ(xλ) ≤ (1− aλ)−1(ϕ(x) + bλ).

(IV)The semilinear operator A+B satisfies the density condition, quasidissipativity condi-
tion and implicit subtangential condition which permits errors as stated below

(IV.1) D(A) ∩D is dense in D.

(IV.2) For α > 0 there is ωα ∈ R such that

〈(A + B)x− (A + B)y, x− y〉i ≤ ωα|x− y|2
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for x, y ∈ D(A) ∩Dα.

(IV.3) For α > 0 and ε > 0 there exists λ0 = λ0(α, ε) such that for λ ∈ (0, λ0) and
x ∈ Dα there exist xλ ∈ D(A) ∩D and zλ ∈ X satisfying |zλ| < ε,

xλ − λ(A + B)xλ = x + λzλ and ϕ(xλ) ≤ (1− λa)−1(ϕ(x) + (b + ε)λ).

(V)The semilinear operator A+B satisfies the quasidissipativity condition and sequential
implicit subtangential condition stated below:

(V.1) For each α > 0 there is ωα ∈ R such that

〈(A + B)x− (A + B)y, x− y〉i ≤ ωα|x− y|2

for x, y ∈ D(A) ∩Dα.

(V.2) For each x ∈ D there exists a null sequence {hn} of positive numbers and a
sequence {xn} in D(A) ∩D such that

(V.2a) lim
n→∞

(1/hn) |xn − hn(A + B)xn − x| = 0,

(V.2b) lim
n→∞

(1/hn) [ϕ(xn)− ϕ(x)] ≤ aϕ(x) + b,

(V.2c) lim
n→∞

|xn − x| = 0.

As mentioned in the Introduction, a semilinear operator A + B is a nonlinear operator
such that the linear part A plays an essential role in the characterization of mild solution
to (SP). The following result shows the significance of the representation of a semilinear
operator A + B. See [12].

Theorem 2.2. Let S = {S (t) ; t ≥ 0} be a nonlinear semigroup on D such that BS (·) x ∈
C ([0,∞) ; X) for each x ∈ D. The following statements are then equivalent

(i) S (t) x = T (t) x +
∫ t

0
T (t− s) BS (s) xds for t ≥ 0 and x ∈ D.

(ii) lim
h↓0

(1/h) [S (h) x− T (h) x] = Bx for x ∈ D.

(iii) lim
h↓0

〈(1/h) (S (h) x− x) , x∗〉 = 〈x, A∗x∗〉+ 〈Bx, x∗〉 for x ∈ D and x∗ ∈ D (A∗).

(iv) (d/dt) (〈S (t) x, x∗〉) = 〈S (t) x, A∗x∗〉 + 〈BS (t) x, x∗〉 for t ≥ 0 ,x ∈ D and x∗ ∈
D (A∗).

(v)
∫ t

0
S (s) xds ∈ D (A) and S (t) x = x + A

∫ t

0
S (s) xds +

∫ t

0
BS (s) xds for t ≥ 0 and

x ∈ D.

In the above, condition (ii) states that A + B is the semilinear infinitesimal generator of
S; (iii) states that A + B is the weak tangential operator to S; condition (iv) means that
S provides weak solutions to (SP) in the sense of Ball; (v) describes that S yields integral
solutions to (SP).

Condition (II.2) guarantees the uniqueness of mild solutions to (SP).

Theorem 2.3. Suppose that condition (II.2) is satisfied. If u(·) and v(·) are locally ϕ-
bounded mild solutions of (SP), then

|u(t)− v(t)| ≤ eω(α,τ)|u(0)− v(0)|

for t ∈ [0, τ ] with ϕ(u(t)), ϕ(v(t)) ≤ α .
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3 Main results

We consider the semilinear problem (SP) under the basic hypotheses (A) and (B).
Suppose that there exists a locally Lipschitzian nonlinear semigroup S = {S (t) ; t ≥ 0}
satisfying the following conditions:

For t ≥ 0 and x ∈ D, S (t) x = T (t) x +

∫ t

0

T (t− s) BS (s) xds.(3.1)

For t ≥ 0 and x ∈ D, ϕ (S (t) x) ≤ eat (ϕ (x) + bt) , where a, b ≥ 0.(3.2)

In other words, the locally Lipschitzian semigroup S provides mild solutions to (SP) and
satisfies the growth condition (3.2). Note that Theorem 2.1 gives necessary and sufficient
conditions for the existence of such semigroup.

We consider the approximate evolution problems

(SP; n) u′n (t) = (An + Bn) un (t) , t > 0; un (0) = xn ∈ Dn,

where Dn ⊂ X and ϕn : X → [0,∞] are proper l.s.c. functionals such that Dn ⊂ D (ϕn) =
{x ∈ X; ϕn(x) < ∞}.

We assume that the operators An and Bn with domain Dn satisfy the basic hypotheses
stated below:

(An) An : D(An) ⊂ X → X generates a (C0)-semigroup Tn = {Tn (t) ; t ≥ 0} on X and
there is ωn ∈ R such that |T (t)x| ≤ eωnt|x| for each x ∈ X and t ≥ 0.

(Bn) Dn,α = {x ∈ Dn, ϕn (x) ≤ α} is closed in X and Bn : Dn → X is nonlinear and
continuous from Dn,α into X.

Suppose that for each n there exists a locally Lipschitzian semigroup Sn = {Sn (t) ; t ≥ 0}
on Dn such that

(3.3) Sn (t) xn = Tn (t) xn +

∫ t

0

Tn (t− s) BnSn (s) xnds

and

(3.4) ϕn (Sn (t) xn) ≤ eat (ϕn (xn) + bt)

for each t ≥ 0 and xn ∈ Dn.
The operators An and Bn with domains Dn are supposed to be the approximate operators

to the operator A and the operator B with domain D. In order to assure this, we impose
the so-called consistency condition for An, Bn and Dn. In what follows we say that {xn}n≥1

is a {ϕn}-bounded sequence if xn ∈ Dn for each n ≥ 1 and sup
n≥1

ϕn (xn) < ∞.

Consistency Condition

(C) The following conditions are satisfied:
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(C1) For x ∈ X and τ > 0, Tn (t) x → T (t) x as n → ∞, uniformly with respect to
t ∈ [0, τ ].

(C2) For all α > 0 there is β = β(α) > 0 such that for each x ∈ Dα there is {xn} with
xn ∈ Dn,β and xn → x as n →∞.

(C3) If x ∈ D, xn ∈ Dn, lim
n→∞

ϕn (xn) < ∞, and xn → x as n →∞, then Bnxn → Bx in

X as n →∞.

Condition (C1) is understood to be a consistency condition for An’s in the sense that the
convergence of their resolvents (I − λAn)−1 to (I − λA)−1 is derived by taking the Laplace
transforms of Tn’s. Condition (C2) states that each level set Dα is approximated by elements
of the level sets Dn,β such that β is independent of n and is chosen so that β > α in general.
Condition (C3) may be interpreted as a {ϕn}-bounded continuous convergence of Bn to B.

Remark 3.1. If Dn ≡ D is independent of n, (C) becomes much simpler since it is not
necessary to choose sequences {xn}n≥1. However, if εA + B is regarded as a singular per-
turbation of B then we necessitate treating the case in which Dn ⊂ D; if A + B is treated
through discrete approximations, then we have the condition that Dn ⊃ D. Therefore, it is
important to assume that Dn does depend upon n and formulate conditions (C2) and (C3).

In addition to conditions (C1) through (C3), we employ the following condition:

(EC) For x ∈ D and for a {ϕn}-bounded sequence {xn}n≥1 with xn → x as n →∞,

sup
n≥1

|Sn(t)xn − xn| → 0 as t → 0.

This condition states that the family {Sn(·)xn} is equicontinuous at t = 0 from the right.
The above condition may be called an equicontinuity condition for Sn’s. It should be

noted that (EC) implies (S) via the uniform boundedness principle provided that An, Bn

and Sn(t) are all linear.
It is also necessary to impose uniformity for the local Lipschitz continuity of the approxi-

mate semigroups Sn, which prevent blow-up situations in their convergence. We then impose
the following stability condition:

Stability Condition

(S) There is a separately nondecreasing function ω : [0,∞)× [0,∞) → [0,∞) such that

|Sn (t) xn − Sn (t) yn| ≤ eω(α,t)t |xn − yn|

for t ≥ 0, α ≥ 0, xn, yn ∈ Dα and n = 0, 1, 2, · · · , where S0 is understood to be the limit
semigroup S.

Under the above assumptions we obtain our first main result (Theorem 5.1).

Theorem 1. Let {Sn}n≥0 be a sequence of locally Lipschitzian semigroups satisfying (3.3)
and (3.4). Suppose that the consistency condition (C) and stability condition (S) are satisfied.
Then (EC) holds if and only if the statement (I) below is valid.
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(I) If x ∈ D, {xn}n≥1 is a {ϕn}-bounded sequence and xn → x as n →∞, then

Sn (t) xn → S0 (t) x as n →∞ for t ≥ 0,

and the convergence is uniform on bounded subintervals of [0,∞).

The above result may be interpreted as a semilinear version of the Lax equivalence
theorem. In fact, if B is linear, then by the uniform boundedness principle condition (EC)
implies (S). This means that under the consistency condition the convergence of {Sn} is
equivalent to the uniform boundedness of {Sn}.

In order to formulate a semilinear version of Neveu-Trotter-Kato theorem, we employ the
following two conditions listed below. Here A0 ≡ A, B0 ≡ B, D0 ≡ D, ϕ0 ≡ ϕ and S0 ≡ S.

The first condition (LQD) means that the family {An + Bn}n≥0 is uniformly quasidissi-
pative in a local sense:

(LQD) For each n ≥ 0 and α > 0 there are ωn,α ∈ R with sup
n≥0

ωn,α < ∞ such that

〈(An + Bn) xn − (An + Bn) yn, xn − yn〉i ≤ ωn,α |xn − yn|2

for each xn, yn ∈ Dn,α.

The second condition (RC) states that the domain D(An) ∩ Dn of An + Bn is dense in
Dn and the range of I − λ(An + Bn) is sufficiently large for each n.

(RC) For n = 0, 1, 2 · · · , D (An) ∩ Dn is dense in Dn; for α > 0 and there is λ0,n =
λ0,n (α) ∈ (0, 1/a) such that to λ ∈ (0, λ0,n) and xn ∈ Dn,α there corresponds xλ

n ∈ D (An) ∩
Dn satisfying

xλ
n − λ (An + Bn) xλ

n = xn and ϕn

(
xλ

n

)
≤ (1− λa)−1 (ϕn (xn) + bλ) .

From our characterization theorem, Theorem 2.1, it follows that both (LQD) and (RC)
hold if and only if there exists a sequence {Sn}n≥0 of locally Lipschitzian semigroups satis-
fying (S), (3.3) and (3.4) provided that Dn and ϕn are all convex. In view of this fact, our
second main result (Theorem 6.1) may be stated as follows:

Theorem 2. Let {Sn}n≥0 be a sequence of locally Lipschitzian semigroups satisfying (3.3)
and (3.4). Asssume that conditions (C) and (S) hold, and that Dn and ϕn are convex for
n = 0, 1, 2, · · · . Then the following three statements are equivalent:

(I) If x0 ∈ D0, {xn}n≥1 is a {ϕn}-bounded sequence, xn → x0 as n →∞, then

Sn (t) xn → S0 (t) x0 as n →∞ for t ≥ 0

and the convergence is uniform on bounded subintervals of [0,∞).

(II) For each α > 0 there is β = β(α) > 0 such that to x0 ∈ D (A0)∩D0,α there corresponds
a sequence {xn}n≥1 such that

xn ∈ D (An) ∩Dn,β, xn → x and (An + Bn) xn → (A0 + B0) x0 as n →∞.
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(III) The following statements are valid:

(III.1) For each α > 0 there is λ1 = λ1 (α) ∈ (0, 1/a) such that if λ ∈ (0, λ1),
xn ∈ Dn,α for n ≥ 1, x0 ∈ D0,α, and xn → x0 as n → ∞, then there exist
xλ

n ∈ D (An) ∩Dn and xλ
0 ∈ D (A0) ∩D0 satisfying

xλ
n − λ (An + Bn) xλ

n = xn , ϕn

(
xλ

n

)
≤ (1− λa)−1 (ϕn (xn) + bλ) ,

xλ
0 − λ (A0 + B0) xλ

0 = x0 , ϕ0

(
xλ

0

)
≤ (1− λa)−1 (ϕ (x0) + bλ) ,

and xλ
n → xλ

0 as n →∞.

(III.2) If ε > 0, x0 ∈ D0, {xn}n≥1 is {ϕn}-bounded and xn → x0 as n → ∞, then
there are a {ϕn}-bounded sequence {zn}n≥1 and z0 ∈ D0 ∩D(A0) such that

zn ∈ D (An) ∩Dn , zn → z0 as n →∞, and sup
n≥0

|zn − xn| < ε.

It should be noted that the convexity assumptions for the domains Dn and the functionals
ϕn are essential for the verification of the implications (I) ⇒ (II) and (I) ⇒ (III).

There are many cases in which it is difficult to treat (SP) unless we apply appropriate
regularization or approximation procedures. In such situations it is important to construct
the solutions of (SP) using the approximate solutions of (SP; n). Our third main result
(Theorem 7.1) is called the approximation-solvability theorem.

Theorem 3. Let D be a closed subset of X,

D̃ = {x ∈ X, x is a limit of some {xn} with xn ∈ Dn for n ≥ 1}
and Φ : X → [0,∞] a functional defined by

Φ (x) =

{
inf{ lim

n→∞
ϕn (xn) ; xn ∈ Dn; xn → x as n →∞} for x ∈ D̃

∞ otherwise.

Suppose that (C1), (C3), (EC), (S) for n ≥ 1 and the following condition are satisfied:

(C4)The following conditions are valid:

(C4.a) For each x ∈ D there is a sequence {xn} such that xn ∈ Dn, lim
n→∞

ϕn (xn) < ∞ and
xn → x as n →∞.

(C4.b) There is β ≥ 0 such that Dn,β 6= ∅ for each n ≥ 1.

(C4.c) If xn ∈ Dn, lim
n→∞

|xn| < ∞ and lim
n→∞

ϕn (xn) < ∞, then lim
n→∞

d (xn, Dα) = 0 for each

α > lim
n→∞

ϕn (xn).

Then there exists a locally Lipschitzian semigroup S = {S (t) ; t ≥ 0} satisfying

(i) S (t) x = T (t) x +

∫ t

0

T (t− s) BS (s) xds for t ≥ 0 and x ∈ D ;

(ii) Φ (S (t) x) ≤ eat (Φ (x) + bt) for t ≥ 0 and x ∈ D.

Moreover, if x ∈ D, xn ∈ Dn, lim
n→∞

ϕn (xn) < ∞ and xn → x as n →∞ , then

Sn (t) xn → S (t) x as n →∞,

and the convergence is uniform on bounded subintervals of [0,∞) .
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4 Equicontinuity of approximating operators

This section is concerned with the uniformity on compact sets of the subtangential con-
dition (II.1) in Theorem 2.1. To this end, we first discuss equicontinuity of the family of
nonlinear operators {Bn}n≥1 on level sets and demonstrate that condition (EC) is equivalent
to the equicontinuity as well as uniform boundedness of {BnSn}n≥1.

Lemma 4.1. Under condition (A), (An) and (C1), we have:
(i) For each τ > 0 there exists Mτ < ∞ such that

(4.1) sup
n≥1

|Tn (t)| ≤ Mτ for t ∈ [0, τ ] .

(ii) If {xn} is convergent in X , then

(4.2) sup
n≥1

|Tn (t) xn − xn| → 0 as t ↓ 0.

(iii) Tn (t) xn → T (t) x uniformly on bounded sets of [0,∞) for each x ∈ X and each
{xn} convergent to x.

The first statement follows from the uniform boundedness principle applied to the family
of operators Tn (t). The third statement (iii) is obvious from (i) and (C1). It is easily seen
that (iii) implies (ii). As well-known, (4.1) implies ‖Tn (t)‖ ≤ Meωt for all n ≥ 1 and some
M , ω ∈ R.

Under conditions (Bn) and (C3), it is shown that the family {Bn} of nonlinear operators
is equicontinuous in the following sense.

Lemma 4.2. Suppose that conditions (Bn) and (C3) hold. Let ε > 0, α > 0, x ∈ D
and let xn ∈ Dn,α be such that xn → x in X as n → ∞. Then there is a number r =
r (ε, α, {xn} , x) > 0 such that

(4.3) sup
n≥1

|Bnxn −Bnyn| ≤ ε

for any sequence {yn} satisfying yn ∈ Dn,α and sup
n≥1

|yn − xn| ≤ r.

Proof. It suffices to show that if
{{

y
(k)
n

}
n≥1

}
k≥1

is a sequence of sequences such that

yk
n ∈ Dn,α and sup

n≥1

∣∣∣y(k)
n − xn

∣∣∣ → 0 as k → ∞, then sup
n≥1

∣∣∣Bny
(k)
n −Bnxn

∣∣∣ → 0 as k → ∞.

Suppose to the contrary that the above statement does not hold. Then there exists a sequence{{
y

(k)
n

}
n≥1

}
k≥1

, a number ε0 > 0 and a divergent subsequence {kl}l≥1 such that y
(k)
n ∈ Dn,α,

sup
n≥1

∣∣∣y(k)
n − xn

∣∣∣ → 0 as k →∞ and sup
n≥1

∣∣∣Bny
(kl)
n −Bnxn

∣∣∣ ≥ ε0 for l ≥ 1. Then for each l there

is nl ≥ 1 such that

(4.4)
∣∣Bnl

y(kl)
nl

−Bnl
xnl

∣∣ ≥ ε0/2.

For the subsequence {nl}l≥1 so chosen, we consider the following two cases:

10



Case 1. If {nl} is bounded, then it contains a constant subsequence for which we also write

{nl}. Since
∣∣∣y(kl)

nl − xnl

∣∣∣ ≤ sup
n≥1

∣∣∣y(kl)
n − xn

∣∣∣ → 0 as l →∞, (4.4) contradicts the continuity of

Bnl
on level sets.

Case 2. If {nl} is unbounded, then it contains a divergent subsequence, which we also

denote by {nl}. Since
∣∣∣y(kl)

nl − x
∣∣∣ ≤ sup

n≥1

∣∣∣y(kl)
n − xn

∣∣∣+|xnl
− x| → 0 as l →∞, and y

(kl)
nl ∈ Dnl,α

we use (C3) to conclude that Bnl
y

(kl)
nl → Bx as l → ∞. But Bnl

xnl
also converges to Bx,

which contradicts (4.4). This completes the proof.

Remark 4.1. As a sufficient condition for (EC), we may assume that the family of nonlinear
operators {Bn} is equi-Lipschitz on level sets, namely, for n ≥ 1 and α ≥ 0 there exist
ωn,α ∈ R such that

|Bnxn −Bnyn| ≤ ωn,α |xn − yn|
for xn, yn ∈ Dn,α, and sup

n≥1
ωn,α < ∞ for each α > 0.

In fact, let Sn = {Sn(t); t ≥ 0}, n ∈ N, be a sequence of locally Lipschitzian semigroups
satisfying (3.3) and (3.4). Let α > 0, δ > 0, β > eaδ(α + bδ), x ∈ D, xn ∈ Dn,α and xn → x.
Then, by Lemma 4.1, |Tn (s) | ≤ Mδ, for n ≥ 1, s ∈ [0, δ] and some Mδ. Since Sn(s)xn ∈ Dn,β

for s ∈ [0, δ] and n ≥ 1, we obtain

|Sn (t) xn − xn| ≤ |Tn (t) xn − xn|+
∫ t

0

|Tn (t− s) [BnSn (s) xn −Bnxn]| ds

+

∫ t

0

|Tn (t− s) Bnxn| ds

≤ |Tn (t) xn − xn|+ Mδ

∫ t

0

|BnSn (s) xn −Bnxn| ds + Mδt |Bnxn|

for t ∈ [0, δ]. Using the equi-Lipschitz continuity of Bn, we have

|Sn(t)xn − xn| ≤ sup
n≥1

|Tn(t)xn − xn|+ tMδ sup
n≥1

|Bnxn|+ Mδ

(
sup
n≥1

ωn,β

) ∫ t

0

|Sn(t)xn − xn| ds.

Applying Gronwall’s inequality, we get

|Sn (t) xn − xn| ≤ c (δ) eMδωβt,

where

c (δ) = sup
t∈[0,δ]

[
sup
n≥1

|Tn (t) xn − xn|
]

+ δMδsup
n≥1

|Bnxn| and ωβ = sup
n≥1

ωn,β.

By Lemma 4.1, c (δ) → 0 as δ → 0 and so it is shown that (EC) holds.
The advantage of imposing the equi-Lipschitz continuity condition on {Bn} is that by

means of appropriate renorming we may employ (C0)-semigroups {Tn} such that |Tn(t)| ≤
Mewt for t ≥ 0 and some M > 1. See [13].

We now show that (EC) is related to the equicontinuity as well as uniform boundedness
of {BnSn (·) xn}.
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Lemma 4.3. Let {Sn}n≥1 be a sequence of locally Lipschitzian semigroups satisfying (3.3)
and (3.4). Assume that conditions (C1) and (C3) hold. Then condition (EC) is equivalent
to any one of the following conditions:

(I) If x ∈ D and {xn} is a ϕn-bounded sequence, xn → x as n →∞, then

sup
n≥1

|BnSn (t) xn −Bnxn| → 0 as t ↓ 0.

(II) If x ∈ D and {xn} is a ϕn-bounded sequence, xn → x as n → ∞, then there exist
M > 0 and δ > 0 such that

sup
n≥1

|BnSn (t) xn| ≤ M

for t ∈ [0, δ] .

Proof. (EC) ⇒ (I) : Let ε > 0, x ∈ D and let {xn} be a {ϕn}-bounded sequence such
that xn → x as n → ∞. Let α = sup

n≥1
ϕn (xn), h0 > 0 and β > eah0 (α + bh0). Then

Sn (t) xn ∈ Dn,β for t ∈ [0, h0]. Let r = r (ε, β, {xn} , x) be a number given by Lemma 4.2
and choose any hr ∈ [0, h0] so that

sup
n≥1

|Sn (t) xn − xn| ≤ r for t ∈ [0, hr] .

Then sup
n≥1

|BnSn (t) xn −Bnxn| ≤ ε for t ∈ [0, hr] by Lemma 4.2. This shows that statement

(I) is valid.

(I) ⇒ (II) : Let ε > 0 and δ > 0 be such that sup
n≥1

|BnSn (t) xn −Bnxn| < ε for each

t ∈ [0, δ]. One then obtains

sup
n≥1

|BnSn (t) xn| ≤ ε + sup
n≥1

|Bnxn|

for t ∈ [0, δ]. Since Bnxn → Bx by (C3), sup
n≥1

|BnSn (t) xn| is bounded on [0, δ].

(II) ⇒ (EC) : Let M > 0 and δ > 0 be the numbers given in (II) and let t ∈ (0, δ).
Using Lemma 4.1, we have

|Sn (t) xn − xn| ≤ |Tn (t) xn − xn|+ MMδt,

and therefore
sup
n≥1

|Sn (t) xn − xn| ≤ sup
n≥1

|Tn (t) xn − xn|+ MMδt.

Letting here t → 0, we obtain condition (EC).

Applying Lemmas 4.1 and 4.2, we obtain the following key result which represents the
local uniformity of the subtangential condition.
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Theorem 4.1. Let Sn = {Sn(t); n ≥ 1}, n ∈ N, be a sequence of locally Lipschitzian
semigroups satisfying (3.3) and (3.4). Suppose that conditions (C) and (EC) hold. Let
x ∈ D, {xn} be a {ϕn}-bounded sequence, and let xn → x as n →∞. Then

(4.5) lim
h↓0

[
sup
n≥1

(1/h) |Tn (h) xn + hBnxn − Sn (h) xn|
]

= 0.

Proof. Let ε > 0, δ0 > 0 and β > eaδ0

(
sup
n≥1

ϕn (xn) + bδ0

)
. Then

ϕn(Sn(t)xn) ≤ eat(ϕn(xn) + bt) < β

for t ∈ [0, δ0]. Let Mδ0 be a positive number given by Lemma 4.1, (i). Also, we may choose
with the aid of Lemma 4.2 a positive number r = r (ε/2Mδ0 , β, {xn} , x) such that yn ∈ Dn,β

and sup
n≥1

|yn − xn| < r imply sup
n≥1

|Bnyn −Bnxn| < ε/2Mδ0 . Since Bnxn → Bx by (C3), it

follows from Lemma 4.1 and (EC) that there exists h0 ∈ (0, δ0) such that

sup
n≥1

|Tn (t) Bnxn −Bnxn| < ε/2 and sup
n≥1

|Sn (t) xn − xn| < r

for t ∈ [0, h0]. Hence we have

(4.6) |Tn (t) Bnyn −Bnxn| ≤ Mδ0 |Bnxn −Bnyn|+ sup
t∈[0,h]

(
sup
n≥1

|Tn (t) Bnxn −Bnxn|
)

< ε

for yn ∈ Dn,β, sup
n≥1

|yn − xn| < r and t ∈ [0, h0]. Therefore, we obtain the estimate

(1/t) |Tn(t)xn + tBnxn − Sn(t)xn| ≤ (1/t)

∫ t

0

|Tn(t− s)BnSn(s)xn −Bnxn| ds < ε

by (4.6). This concludes that (4.5) holds.

5 Convergence theorem

This section is devoted to the proof of Theorem 1 which is stated as follows.

Theorem 5.1. Let {Sn}n≥0 be a sequence of locally Lipschitzian semigropus satisfying (3.3)
and (3.4). Suppose that conditions (C) and (S) are satisfied. Then condition (EC) is equiv-
alent to the statement (I) below:

(I) If x ∈ D, {xn}n≥1 is a {ϕn}-bounded sequence and xn → x as n →∞, then

Sn (t) xn → S0 (t) x as n →∞ for t ≥ 0,

and the convergence is uniform on bounded subintervals of [0,∞).
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Proof. (I) ⇒ (EC) : We use Kisyński’s sequence space. See also [2], [3], [8], [9], [10]. Let

X = c (X) =
{

X = {xn}n≥0 ; xn ∈ X, xn → x0 as n →∞
}

be the space of convergent sequences in X, with norm |{xn}n≥0| = sup
n≥0

|xn|. Let {xn}n≥1 be

a {ϕn}-bounded sequence such that xn → x0 as n →∞, for some x0 in D.
For t ≥ 0, we define an X -valued function by

V (t) = {Sn(t)xn}n≥0 .

This is well-defined in X under condition (I). For each N ≥ 1 and each t ≥ 0 we define

VN(t) = {vn(t)}n≥0 , vn(t) =

{
Sn(t)xn for 0 ≤ n ≤ N − 1,

S0(t)x0 for n ≥ N.

It is easily seen that, for each N ≥ 1, VN(·) is continuous over [0,∞) in X and

|VN(t)− V (t)| = sup
n≥N

|Sn(t)xn − S0(t)x0| .

From statement (I), for each ε > 0 and τ > 0 there is N = Nε,τ such that n ≥ Nε,τ implies

|Sn(t)xn − S0(t)x0| < ε for each t ∈ [0, τ ].

Hence N ≥ Nε,τ implies sup
t∈[0,τ ]

|VN(t)− V (t)| ≤ ε, and consequently V (·) is continuous in X .

Since the sequence {xn}n≥1 was arbitrary, one obtains that condition (EC) is satisfied.

We next demonstrate that (EC) implies (I). Assume that (EC) holds. Let x ∈ D and {xn}
be a {ϕn}-bounded sequence converging to x. Let τ > 0 and α > 0 be a number such that
α > eaτ (ϕ (x) + bτ), which implies S (t) x ∈ Dα for t ∈ [0, τ ]. Let β = β (α) be a number

given by (C2). Without loss of generality we may assume that β > eaτ

(
sup
n≥1

ϕn (xn) + bτ

)
,

which implies Sn (t) ∈ Dn,β for t ∈ [0, τ ] and n ≥ 1.

Step 1 Let ε > 0. In this step we construct a finite sequence {tk}N
k=0 in [0,∞) and a

finite sequence
{{

y
(k)
n

}
n≥1

}N

k=0
of sequences in X satisfying the following conditions:

(i) t0 = 0, tN = τ , y
(0)
n = xn for n ≥ 1;

(ii) 0 < tk+1 − tk < ε;

(iii) y
(k)
n ∈ Dn,β , y

(k)
n → S (tk) x as n →∞;

(iv) lim
n→∞

∣∣∣Tn (tk+1 − tk) y
(k)
n + (tk+1 − tk) Bny

(k)
n − Sn (tk+1 − tk) y

(k)
n

∣∣∣ ≤ (tk+1 − tk) ε

and
|T (tk+1 − tk) S (tk) x + (tk+1 − tk) BS (tk) x− S (tk+1 − tk) S (tk) x| ≤ (tk+1 − tk) ε.
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First we set t0 = 0 and
{
y

(0)
n

}
n≥1

= {xn}n≥1. Here (i) and (iii) are valid for k = 0. Let

k ≥ 0 and assume that {tj}k
j=0 and

{{
y

(j)
n

}}k

j=0
have been constructed in such a way that

(ii), (iii) and (iv) are satisfied.
If tk < τ , we define

(5.1) ĥk = sup {h ∈ (0, ε] ∩ (0, τ − tk]; (5.2) and (5.3) hold} ,

where

(5.2) lim
n→∞

∣∣Tn (h) y(k)
n + hBny

(k)
n − Sn (h) y(k)

n

∣∣ ≤ hε,

and

(5.3) |T (h) S (tk) x− hBS (tk) x− S (h) S (tk) x| ≤ hε.

By Theorems 2.2 and 4.1, it is seen that ĥk > 0. We then choose an appropriate number
hk ∈ [ĥk/2, ĥk] so that (5.2) and (5.3) hold for h = hk. We put tk+1 = tk+hk (≤ τ) and apply

(C2) to find a new sequence
{
y

(k+1)
n

}
n≥1

such that y
(k+1)
n ∈ Dn,β and y

(k+1)
n → S (tk+1) x.

Hence (iii) holds for tk+1. It is also seen from the definition of ĥk that (ii) and (iv) hold for

tk+1. One now continue constructing the numbers tj and sequences
{
y

(j)
n

}
so far as tj < τ .

Next, we show that τ is attained in finite steps. Suppose to the contrary that tk < τ for
all k ≥ 0. Then there exists s = lim

k→∞
tk ≤ τ , and so S (s) x ∈ Dα. By (C2) a sequence {zn}

can be found such that zn ∈ Dn,β and zn → S (s) x as n →∞. From Theorems 2.2 and 4.1
we infer that there exists h ∈ (0, ε] such that

(5.4) sup
n≥1

(1/h) |Tn (h) zn + hBnzn − Sn (h) zn| < ε/3

and

(5.5) (1/h) |S (h) S (s) x− hBS (s) x− T (h) S (s) x| < ε/3.

Our aim here is to show that (5.4) or (5.5) is violated. Since the series
∞∑

n=1

hn is summable,

there must exist N ≥ 1 such that ĥk < h for all k ≥ N . This implies that for each k ≥ N
we have either

lim
n→∞

∣∣Tn (h) y(k)
n + hBny

(k)
n − Sn (h) y(k)

n

∣∣ > hε,

or
|T (h) S (tk) x + hBS (tk) x− S (h) S (tk) x| > hε.

Hence, it would be concluded that either

lim
n→∞

∣∣Tn (h) y(k)
n + hBny

(k)
n − Sn (h) y(k)

n

∣∣ > hε

for infinitely many k ≥ N , or

|T (h) S (tk) x + hBS (tk) x− S (h) S (tk) x| > hε
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for infinitely many k ≥ N . In the first case, there is a subsequence {kl}l≥1 such that kl ≥ N ,
kl →∞ and

lim
n→∞

∣∣Tn (h) y(kl)
n + hBny

(kl)
n − Sn (h) y(kl)

n

∣∣ > hε

for l ≥ 1. Then there is a subsequence nl ≥ 1 such that nl > nl−1 ,

(5.6)
∣∣Tnl

(h) y(kl)
nl

+ hBnl
y(kl)

nl
− Snl

(h) y(kl)
nl

∣∣ > hε/2 for l ≥ 1,

and

(5.7)
∣∣y(kl)

nl
− S (tkl

) x
∣∣ ≤ 1/kl.

Since S (tkl
) x → S (s) x and znl

→ S (s) x as kl →∞, we deduce from (5.7) that

(5.8)
∣∣znl

− y(kl)
nl

∣∣ → 0 as l →∞.

We here observe the inequality

|Tnl
(h) znl

+ hBnl
znl

− Snl
(h) znl

| ≥
∣∣Tnl

(h) y(kl)
nl

+ hBnl
y(kl)

nl
− Snl

(h) y(kl)
nl

∣∣
−h

∣∣Bnl
y(kl)

nl
−Bnl

znl

∣∣− ∣∣Tnl
(h) y(kl)

nl
− Tnl

(h) znl

∣∣− ∣∣Snl
(h) y(kl)

nl
− Snl

(h) znl

∣∣
and denote the second, third and fourth terms in the right-hand side by J1, J2 and J3,
respectively. We have

J2 =
∣∣Tnl

(h) y(kl)
nl

− Tnl
(h) znl

∣∣ ≤ Mh

∣∣y(kl)
nl

− znl

∣∣ → 0

as l →∞, by (5.8), where Mh is a constant given by Lemma 4.1 (i). One also has

J1 = h |Bnl
ynl

−Bnl
znl
| → 0

as l →∞, since both Bnl
ynl

and Bnl
znl

tends to BS (s) x as l →∞. Moreover,

J3 =
∣∣Snl

(h) y(kl)
nl

− Snl
(h) znl

∣∣ ≤ eω(β,h)h
∣∣y(kl)

nl
− znl

∣∣ → 0

as kl →∞, by (5.8).
Hence, for l sufficiently large, (5.6) implies |Tnl

(h) znl
+ hBnl

znl
− Snl

(h)znl
| > hε/3,

which contradicts (5.4).
In the second case, there is a subsequence {kl}l≥1, such that kl ≥ N for l ≥ 1, kl → ∞

as l →∞, and
|T (h) S (tkl

) x + hBS (tkl
) x− S (h) S (tkl

) x| > hε

for l ≥ 1. Letting l →∞ we obtain

|T (h) S (s) x + hBS (s) x− S (h) S (s) x| ≥ hε,

which contradicts (5.5).
Thus it is concluded that tN = τ for some N ≥ 1, and that Step 1 is complete.

Step 2 In this step we demonstrate that Sn converges to S.
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Let {tk}N
k=0 and

{
y

(k)
n

}
n≥1

, be sequences constructed in Step 1. Let t ∈ (tk, tk+1] for some
k with 0 ≤ n ≤ N − 1. Then

|Sn (t) xn − S (t) x| ≤ |Sn (t) xn − Sn (tk+1) xn|+ |Sn (tk+1) xn − S (tk+1) x|(5.9)

+ |S (tk+1) x− S (t) x| .

Using the stability condition (S), one can show that

(5.10) |Sn (t) xn − Sn (tk+1) xn| ≤ eω(β,τ)τ |Sn (tk+1 − t) xn − xn|

for n ≥ 1, and

(5.11) |S (tk+1) x− S (t) x| ≤ eω(α,τ)τ |S (tk+1 − t) x− x| .

It now remains to estimate the second term on the right-hand side of (5.9). Using condition
(S), one obtains

|Sn (tk+1) xn − S (tk+1) x| ≤ eω(β,τ)(tk+1−tk)
(
|Sn (tk) xn − S (tk) x|+

∣∣S (tk) x− y(k)
n

∣∣)(5.12)

+
∣∣Sn (tk+1 − tk) y(k)

n − S (tk+1) x
∣∣ .

We also have∣∣Sn (tk+1 − tk) y(k)
n − S (tk+1) x

∣∣
≤

∣∣Sn (tk+1 − tk) y(k)
n − Tn (tk+1 − tk) y(k)

n − (tk+1 − tk) Bny
(k)
n

∣∣
+

∣∣Tn (tk+1 − tk) y(k)
n − T (tk+1 − tk) S (tk) x

∣∣ + (tk+1 − tk)
∣∣Bny

(k)
n −BS (tk) x

∣∣
+ |T (tk+1 − tk) S (tk) x + (tk+1 − tk) BS (tk) x− S (tk+1) x| .

Taking the limit superior in (5.12) gives

lim
n→∞

|Sn (tk+1) xn − S (tk+1) x| ≤ eω(β,τ)(tk+1−tk) lim
n→∞

|Sn (tk) xn − S (tk) x|+ 2ε (tk+1 − tk)

+ lim
n→∞

∣∣Tn (tk+1 − tk) y(k)
n − T (tk+1 − tk) S (tk) x

∣∣ .

Since lim
n→∞

∣∣∣Tn (tk+1 − tk) y
(k)
n − T (tk+1 − tk) S (tk) x

∣∣∣ = 0 by Lemma 4.1, it follows that

lim
n→∞

|Sn (tk+1) xn − S (tk+1) x| ≤ eω(β,τ)(tk+1−tk) lim
n→∞

|Sn (tk) xn − S (tk) x|+ 2ε (tk+1 − tk) .

Denoting lim
n→∞

|Sn (tk) xn − S (tk) x| by Lk, we obtain

Lk+1 ≤ eω(β,τ)(tk+1−tk)Lk + 2ε (tk+1 − tk) , L0 = 0.

This recurrent inequality implies

(5.13) lim
n→∞

|Sn (tk+1) xn − S (tk+1) x| ≤ 2ετeω(β,ε)τ .
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Passing to limit superior as n → ∞ in (5.9) and applying (5.10), (5.11) and (5.13), one
obtains

lim
n→∞

|Sn (t) xn − S (t) x|

≤ eω(β,τ)τ
[

lim
n→∞

|Sn (tk+1 − t) xn − xn|+ 2ετ
]

+ eω(α,τ)τ |S (tk+1 − t) x− x|

≤ eω(β,τ)τ

[
sup

h∈[0,ε]

(
sup
n≥1

|Sn (h) xn − xn|
)

+ 2ετ + sup
h∈[0,ε]

|S (h) x− x|

]
.

Since

sup
h∈[0,ε]

(
sup
n≥1

|Sn (h) xn − xn|
)
→ 0 as ε ↓ 0

by (EC) and
sup

h∈[0,ε]

|S (h) x− x| → 0 as ε ↓ 0

we conclude that

lim
n→∞

|Sn (t) xn − S (t) x| = 0 uniformly on [0, τ ] .

This means that Sn (·) xn converges to S (·) x uniformly on [0, τ ]. Thus the proof is complete.

6 Semilinear Neveu-Trotter-Kato theorem

In this section we discuss a semilinear version of the Neveu-Trotter-Kato theorem under
the assumption that Dn and ϕn, n = 0, 1, 2, · · · , are convex. Let {Sn}n≥0 be a sequence of
locally Lipschitzian semigroups satisfying (3.3) and (3.4). Our aim is to give the proof of
a semilinear Neveu-Trotter-Kato theorem under the stability condition (S). As mentioned
in Section 3, condition (S) is equivalent to the combination of (LQD) and (RC) stated as
below:

(LQD) For n ≥ 0 and α > 0 there exist ωn,α ∈ R such that sup
n≥0

ωn,α < ∞ and

〈(An + Bn) xn − (An + Bn) yn, xn − yn〉i ≤ ωn,α |xn − yn|2 for each xn, yn ∈ Dn,α.

(RC) For n = 0, 1, 2 · · · , D (An) ∩ Dn is dense in Dn; for α > 0 and there is λ0,n =
λ0,n (α) ∈ (0, 1/a) such that to λ ∈ (0, λ0,n) and xn ∈ Dn,α there corresponds xλ

n ∈ D (An) ∩
Dn satisfying

xλ
n − λ (An + Bn) xλ

n = xn and ϕn

(
xλ

n

)
≤ (1− λa)−1 (ϕn (xn) + bλ) .

Remark 6.1. As shown in [11, Theorem 3.1], it is seen that λ0,n can be chosen independently
of n. More precisely, for each α > 0 we may take the constant

λ0,n (α) = λ0 (α) = min

{(
max

{
sup
n≥0

ωn,α, 0
})−1

, (a (α + 2) + (b + 1))−1

}
.

18



We now state our second main result

Theorem 6.1. Let {Sn}n≥0 be a sequence of locally Lipschitzian semigroups satisfying (3.3)
and (3.4). Asssume that conditions (C) and (S) hold, and that Dn and ϕn are convex for
n = 0, 1, 2, · · · . Then the following statements are equivalent.

(I) If x0 ∈ D0, {xn}n≥1 is a {ϕn}-bounded sequence, xn → x0 as n →∞, then

Sn (t) xn → S0 (t) x0 as n →∞ for t ≥ 0

and the convergence is uniform on bounded subintervals of [0,∞).

(II) For each α > 0 there is β = β(α) > 0 such that to x0 ∈ D (A0)∩D0,α there corresponds
a sequence {xn}n≥1 such that

xn ∈ D (An) ∩Dn,β, xn → x and (An + Bn) xn → (A0 + B0) x0 as n →∞.

(III) The following statements are valid:

(III.1) For each α > 0 there is λ1 = λ1 (α) ∈ (0, 1/a) such that if λ ∈ (0, λ1),
xn ∈ Dn,α for n ≥ 1, x0 ∈ D0,α, and xn → x0 as n → ∞, then there exist
xλ

n ∈ D (An) ∩Dn and xλ
0 ∈ D (A0) ∩D0 satisfying

xλ
n − λ (An + Bn) xλ

n = xn , ϕn

(
xλ

n

)
≤ (1− λa)−1 (ϕn (xn) + bλ) ,

xλ
0 − λ (A0 + B0) xλ

0 = x0 , ϕ0

(
xλ

0

)
≤ (1− λa)−1 (ϕ (x0) + bλ) ,

and xλ
n → xλ

0 as n →∞.

(III.2) If ε > 0, x0 ∈ D0, {xn}n≥1 is {ϕn}-bounded and xn → x0 as n → ∞, then
there are a {ϕn}-bounded sequence {zn}n≥1 and z0 ∈ D0 ∩D(A0) such that

zn ∈ D (An) ∩Dn , zn → z0 as n →∞, and sup
n≥0

|zn − xn| < ε.

Proof. (I) ⇒ (II) : Suppose that (I) holds. Let α > 0 and x0 ∈ D (A0) ∩D0,α. By (C2),
one finds a number γ > 0 and a sequence {xn}n≥1 such that xn ∈ Dn,γ for n ≥ 0 and xn → x0

as n →∞. Set xh
n=(1/h)

∫ h

0
Sn (t) xndt, for n ≥ 0 and h > 0.

We see from Theorem 2.2 that xh
n ∈ D (An) ∩Dn and

Anx
h
n + (1/h)

∫ h

0

BnSn (t) xn dt = (1/h) (Sn (h) xn − xn) for n ≥ 0.

Let β > eah0 (γ + b). Since

ϕn

(
xh

n

)
≤ (1/h)

∫ h

0

ϕn (Sn (t) xn) dt ≤ eah (ϕn (xn) + bh) < β

for n ≥ 1, it follows that xh
n ∈ Dn,β for n ≥ 1 and h ∈ (0, 1].
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Let ε > 0. We have∣∣(An + Bn) xh
n − (1/h) (Sn (h) xn − xn)

∣∣
≤

∣∣∣∣Bnx
h
n − (1/h)

∫ h

0

BnSn (t) xndt

∣∣∣∣
≤ (1/h)

∫ h

0

|BnSn (t) xn −Bnxn| dt +
∣∣Bnx

h
n −Bnxn

∣∣ .

From condition (I) and Lemma 4.3 it follows that there is δ ∈ (0, 1] such that

(6.1)
∣∣(An + Bn) xh

n − (1/h) (Sn (h) xn − xn)
∣∣ < ε for h ∈ (0, δ] and n ≥ 1.

Since xh
0 → x0 as h → 0 and x0 ∈ D (A0) ∩D0, we have

(6.2)
∣∣xh

0 − x0

∣∣ ≤ (1/h)

∫ h

0

|S0 (t) x0 − x0| dt < ε

and, by Theorem 2.2 (ii),

(6.3) |(A0 + B0) x0 − (1/h) (S0 (h) x0 − x0)| < ε,

for h ∈
[
0, δ̂

]
and some δ̂. We here take δ̂ to be smaller than δ. Then

∣∣xh
n − x0

∣∣ <
∣∣xh

n − xn

∣∣+
|xn − x0|, and so (6.2) implies that lim

n→∞

∣∣xh
n − x0

∣∣ ≤ ε,∣∣(An + Bn) xh
n − (A0 + B0) x0

∣∣ ≤ 2ε + |(1/h) (Sn (h) xn − xn)− (1/h) (S0 (h) x0 − x0)| .

which implies that lim
n→∞

∣∣(An + Bn) xh
n − (A0 + B0) x0

∣∣ ≤ 2ε. From this we infer that there

exists a sequence {yn}n≥1 such that

yn ∈ Dn,β for n ≥ 1 , yn → x0 and (An + Bn) yn → (A0 + B0) x0 as n →∞.

Thus (II) follows.
(II)⇒(III) : 1. We first derive (III.1). Let α > 0, xn ∈ Dn,α for n ≥ 0, and let xn → x0

as n → ∞. Let λ0(α) be the number specified in Remark 6.1 and β a number given for
γ = (1− λ0(α))−1 (α + bλ0(α)) (instead of α) by (II). Then it follows from (RC) that for
n ≥ 0 and λ ∈ (0, λ0(α)) there exists an xλ

n ∈ Dn such that

xλ
n − λ (An + Bn) xλ

n = xn and ϕn

(
xλ

n

)
≤ (1− λa)−1 (ϕn (xn) + bλ) ≤ γ.

Now, for each λ ∈ (0, λ0(α)), (II) asserts the existence of a sequence
{
yλ

n

}
n≥1

such that

yλ
n ∈ D (An) ∩Dn,β , yλ

n → xλ
0 and (An + Bn) yλ

n → (A0 + B0) xλ
0 as n →∞.

At this point we necessitate assuming that β > γ and choosing a number λ1(α) so that

λ1(α) < min
{

λ0(α) ,
(
sup
n≥1

ωn,β

)}
. Let λ ∈ (0, λ1(α)) and zλ

n = yλ
n − λ (An + Bn) yλ

n for

n ≥ 1. Then, by (LQD), we have∣∣zλ
n − xn

∣∣ =
∣∣yλ

n − λ (An + Bn) yλ
n − xλ

n + λ (An + Bn) xλ
n

∣∣(6.4)
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≥ (1− λ sup
n≥1

ωn,β)
∣∣xλ

n − yλ
n

∣∣ for n ≥ 1.

Since
∣∣zλ

n − xn

∣∣ ≤ ∣∣zλ
n − x0

∣∣ + |x0 − xn|, and∣∣zλ
n − x0

∣∣ =
∣∣yλ

n − λ (An + Bn) yλ
n − xλ

0 + λ (A0 + B0) xλ
0

∣∣ → 0 as n →∞,

it follows that
∣∣yλ

n − xλ
n

∣∣ → 0 as n → ∞. Since yλ
n → xλ

0 , it is concluded that xλ
n → xλ

0 as
n →∞.

We next show (III.2). Let ε > 0. Let {xn}n≥0 be a {ϕn}-bounded sequence and assume
that xn → x0 as n → ∞. By (RC) one finds xε

0 ∈ D (A0) ∩ D0 such that |xε
0 − x0| < ε/3.

Let α = ϕ (xε
0). Then there is β > 0 and a sequence {yε

n}n≥1, yε
n ∈ D (An) ∩Dn,β such that

(6.5) yε
n → xε

0 and (An + Bn) yε
n → (A0 + B0) xε

0.

Let Nε > 0 such that

(6.6) |xn − x0| < ε/3 and |yε
n − xε

0| < ε/3 for n ≥ Nε.

For 1 ≤ n ≤ Nε−1, (RC) guarantees the existence of wε
n ∈ D (An)∩Dn such that |wε

n − xn| <
ε. We then define {zn}n≥0 by

zn =


xε

0 if n = 0

wε
n if 1 ≤ n ≤ Nε − 1

yε
n if n ≥ Nε.

For n ≥ Nε, (6.6) implies

|yε
n − xn| ≤ |xn − x0|+ |x0 − xε

0|+ |yε
n − xε

0| < ε.

Combining the above-mentioned we conclude that |zn − xn| < ε for all n ≥ 0. Finally, by
(6.5) we see that zn → z0 as n →∞, and that (III.2) is obtained.

(III) ⇒ (I) : We again employ the Kisyński sequence space defined in Section 5. We first
define a linear operator A : D (A ) ⊂ X → X , a nonlinear operator B : D ⊂ X → X
and a functional : X → X by the following

D (A ) =
{

X = {xn}n≥0 ∈ X ; xn ∈ D (An) for each n ≥ 0, Anxn → A0x0 as n →∞
}

,

A
(
{xn}n≥0

)
= {Anxn}n≥0 ,

D =
{

X = {xn}n≥0 ∈ X ; xn ∈ Dn for n ≥ 0 and sup
n≥0

ϕn (xn) < ∞
}
;

B
(
{xn}n≥0

)
= {Bnxn}n≥0 ;

(
{xn}n≥1

)
=

sup
n≥0

ϕn(xn) if x ∈ D

∞ otherwise.

We then define level sets with respect to by

Dα =
{
{xn}n≥1; ({xn}n≥1) ≤ α

}
, α ≥ 0.
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It is easily seen that the lower semicontinuity of each ϕn implies the lower semicontinuity
of . Also, X = {xn}n≥0 ∈ Dα if and only if xn ∈ Dn,α for each n ≥ 0. Hence each Dα is
closed in X . Moreover, we observe that {xn}n≥0 is a {ϕn}-bounded sequence and xn → x0

as n →∞ if and only if {xn}n≥0 belongs to some Dγ.
Now, B is well-defined by (C3). The Neveu-Trotter-Kato theorem and Lemma 4.1 to-

gether imply that A generates a (C0)-semigroup T = {T (t) ; t ≥ 0} on X given by

T (t)
(
{xn}n≥0

)
= lim

n→∞
(I − (t/m) A )−m {xn}n≥0 = {Tn (t) xn}n≥0 .

From (LQD) we obtain

(1− λωα)|xn − yn| ≤ |(I − λ(An + Bn))xn − (I − λ(An + Bn))yn|

for n ≥ 0, xn, yn ∈ Dn,α, λ > 0 and α ≥ 0, where ωα = sup
n≥0

ωn,α. Hence

(1− λωα)|X − Y | ≤ |(I − λ(A + B))X − (I − λ(A + B))Y |

for X , Y in Dα, λ ∈ (0, ωα) and α ≥ 0. From this, we see that A + B is quasidissipative on
Dα, α ≥ 0, namely

〈(A + B) X − (A + B) Y , X − Y 〉i ≤
(
sup
n≥0

ωn,α

)
|X − Y |2

for X , Y ∈ Dα, α ≥ 0, where 〈·, ·〉i stands for the lower semiinnner product in X . It follows
from Lemma 4.2 that B is continuous on each Dα, α > 0.

Let α > 0 and X = {xn}n≥0 ∈ Dα. Then xn ∈ Dn,α for n ≥ 0 and xn → x0 as n → ∞.
By (III) there exists λ0 = λ0 (α) > 0 such that for each λ ∈ (0, λ0) and each n ≥ 0 there
exists xλ

n ∈ Dn ∩D (An) such that

xλ
n − λ (An + Bn) xλ

n = xn, ϕn

(
xλ

n

)
≤ (1− aλ)−1 (ϕn (xn) + bλ) for n ≥ 0 and xλ

n → xλ
0 ,

which means that

X
λ − λ (A + B) X

λ = X and also
(

X
λ
)
≤ (1− aλ)−1 ( (X ) + bλ) in X .

Now (III.2) implies that D (A ) ∩ D is dense in D . Applying Theorem 2.1 to the Kisyński
space X , one obtains a locally Lipschitzian semigroup S satisfying

S (t)
(
{xn}n≥0

)
= T (t)

(
{xn}n≥0

)
+

∫ t

0

T (t− s) BS (s)
(
{xn}n≥0

)
ds

and (
S (t) {xn}n≥0

)
≤ eat

( (
{xn}n≥0

)
+ bt

)
.

Here the uniqueness theorem, Theorem 2.3, asserts that S (t)
(
{xn}n≥0

)
= {Sn(t)xn}n≥0 for

t ≥ 0 and {xn}n≥0 ∈ D . Therefore, we may write∫ t

0

T (t− s) BS (s)
(
{xn}n≥0

)
ds =

{∫ t

0

Tn (t− s) BnSn (s) xnds

}
n≥0

.
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The continuity of the semigroup S implies∣∣S (t)
(
{xn}n≥0

)
− {xn}n≥0

∣∣ → 0 as t ↓ 0 for X = {xn}n≥0 ∈ D .

This is actually nothing but condition (EC). This implies in turn, from Theorem 5.1, the
required uniform convergence.

Remark 6.2. The second statement corresponds to the convergence in the sense of graphs
on a core of D(A0) in the Neveu-Trotter-Kato theorem, while the third one corresponds
to the convergence in the sense of resolvents. See [7] for details and [6] for a discussion
on the consistency and stability condition in the linear case, and on error estimates for
smooth initial data. See also [5] for a recent application of Neveu-Trotter-Kato theorem to
an age-structured population dynamics model.

Remark 6.3. If the family {Bn}n≥0 is uniformly Lipschitz in the sense of Remark 4.1, then
B becomes a locally Lipschitz operator and (III.2) is no longer necessary. See [13] for details.

7 Approximation solvability theorem

This section corresponds to the case in which it is not straightforward to verify the
hypotheses of the known generation theorems for the semilinear problem

(SP) u′ (t) = (A + B) u (t) , t > 0; u (0) = x ∈ D.

Here A is assumed to be the generator of a (C0)-semigroup T = {T (t) ; t ≥ 0}, D is a
closed subset of X and B : D → X is a nonlinear operator.

In this case one can try to obtain the semigroup S as an uniform limit of the approximate
semigroups Sn, using suitable approximations for the operators A and B.

We consider again the approximate semilinear problems

(SP; n) u′n (t) = (An + Bn) un (t) , t > 0; un (0) = xn ∈ Dn,

with An and Bn satisfying respectively the hypotheses (An) and (Bn) given in Section 2. Also,
to each (SP; n) one associates a proper l.s.c. functional such that D ⊂ D (ϕn). We assume
that for each n there exists a nonlinear semigroup Sn = {Sn (t) ; t ≥ 0} on Dn satisfying (3.3)
and (3.4).

Define a set D̃ in X by

(7.1) D̃ = {x ∈ X, x is a limit of some {xn} with xn ∈ Dn for n ≥ 1} ,

and a functional Φ : X → [0,∞] such that

(7.2) Φ (x) =

{
inf

{
lim

n→∞
ϕn (xn) ; xn ∈ Dn for n ≥ 1, xn → x as 4n →∞

}
for x ∈ D̃

∞ otherwise.

Suppose now that the following condition is satisfied:

(C4) The following statements hold:
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(C4.a) For each x ∈ D there is a sequence {xn} such that xn ∈ Dn, lim
n→∞

ϕn (xn) < ∞ and

xn → x in X as n →∞.

(C4.b) There is β ≥ 0 such that Dn,β 6= ∅ for each n ≥ 1.

(C4.c) If xn ∈ Dn, lim
n→∞

|xn| < ∞ and lim
n→∞

ϕn (xn) < ∞, then lim
n→∞

d (xn, Dα) = 0, for each

α > lim
n→∞

ϕn (xn).

together with (C1) and (C3). Note that, by (C4.a), D ⊂ D̃ and Φ (x) < ∞ for each
x ∈ D.

We intend to use the newly-defined functional Φ as a growth function to establish the
well-posedness of (SP). To this goal, we necessitate establishing some properties of Φ and

D̃.

Lemma 7.1. The set D̃ is closed in X.

Proof. Let x̃n ∈ D̃ , x̃n → x̃ ∈ X. We may use the definition of D̃ to obtain the sequences
{{xm

n }m}n such that xm
n ∈ Dm for each m, n ≥ 1 and xm

n → x̃n as m →∞.
Then for each i ≥ 1 we can choose Ni such that

(7.3) |xm
i − x̃i| ≤ 1/i for m ≥ Ni, and also Ni ≥ Ni−1 for i ≥ 2.

Define now {yn} by yn =

{
xn

1 for 1 ≤ n ≤ N2 − 1

xn
i for i ≥ 2 and Ni ≤ n ≤ Ni+1 − 1.

Let ε > 0 and Nε ≥ 1 great enough, so that

(7.4) |x̃n − x̃| < ε/2 for n ≥ Nε and also 1/Nε < ε/2.

Then |yn − x̃| ≤ |yn − x̃N |+ |x̃N − x| for some N ≥ Nε corresponding to yn by the defining
procedure (that is, yn = xn

N for that N), and from (7.3) and (7.4) we obtain that |yn − x̃| < ε

for n ≥ NN . This shows that yn → x and so x̃ ∈ D̃ and D̃ is closed.

We also observe that the infimum in (7.2) is actually a minimum, as seen from the
following lemma.

Lemma 7.2. For each x ∈ D̃ there is a sequence {xn}, xn ∈ Dn, xn → x as n → ∞ such
that Φ (x) = lim

n→∞
ϕn (xn).

Proof. Let x ∈ D̃ and ε > 0.
If Φ (x) < ∞, then for each k > 0 there is a sequence

{
xk

n

}
n

such that xk
n ∈ Dn for n ≥ 1,

xk
n → x as n →∞ and lim

n↓∞
ϕn

(
xk

n

)
< Φ (x) + 1/(2k). Then for each k ≥ 1 we can choose Nk

such that

(7.5) ϕn

(
xk

n

)
< Φ (x) + 1/k ,

∣∣xk
n − x

∣∣ < 1/k for all n > Nk and Nk ≥ Nk−1 for k ≥ 2.

24



As in the proof of Lemma 7.1, we define a diagonal sequence {yn} by

yn =

{
x1

n for 1 ≤ n ≤ N2 − 1

xi
n for i ≥ 2 and Ni ≤ n ≤ Ni+1 − 1.

Let m ≥ 1 such that 1/m < ε. Then

(7.6) |yn − x| < ε for n ≥ Nm.

We also see that lim
n→∞

ϕn (yn) ≤ Φ (x) by (7.5) and, since lim
n↓∞

ϕn (yn) ≥ Φ (x) by the

definition of Φ, we obtain lim
n→∞

ϕn (xn) = Φ (x). Combining this with (7.6) we see that {yn}
is the required sequence.

If Φ (x) = ∞, then

inf
{

lim
n→∞

ϕn (xn) , xn ∈ Dn, xn → x as n →∞
}

= ∞,

and so lim
n→∞

ϕn (xn) = ∞ for each {xn} such that xn ∈ Dn for all n and xn → x, so Lemma

7.2 is proved.

The existence of such minimizing sequence will play a central role in the proof of the
continuity of B on level sets, as it will be seen in what follows.

Lemma 7.3. Φ is proper l.s.c. .

Proof. Set x ∈ X and let {xn} be a sequence which converges to x as n →∞.

If x 6∈ D̃ then xn 6∈ D̃ for n greater than some N ; otherwise x ∈ D̃ = D̃. Then
Φ (xn) = ∞ for n ≥ N , and so Φ (x) = lim

n→∞
Φ (xn) = ∞.

If x ∈ D̃ and lim
n→∞

Φ (xn) < ∞, then there is a subsequence {nk} such that Φ (xnk
) →

lim
n→∞

Φ (xn) as k → ∞. Using the definition of Φ, for each k ≥ 1 we can choose sequences{
xk

nk,m

}
m

such that

xk
nk,m ∈ Dm for each m ≥ 1 , xk

nk,m → xnk
as m →∞

and
lim

m→∞
ϕm

(
xk

nk,m

)
< Φ (xnk

) + 1/2k.

Then, as in the proof of Lemma 7.2, for each k ≥ 1 we can choose Nk ≥ 1 such that
(7.7)

ϕm

(
xk

nk,m

)
< Φ (xnk

) + 1/k ,
∣∣xk

nk
− xnk

∣∣ < 1/k for m ≥ Nk and Nk ≥ Nk−1 for k ≥ 2.

We now define a sequence {ym} by

ym =

{
x1

n1,m for 1 ≤ m ≤ N2 − 1

xi
ni,m

for i ≤ 2 and Ni ≤ m ≤ Ni+1 − 1.
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Let ε > 0 and kε ≥ 1 such that

(7.8) Φ (xnk
)− lim

n→∞
Φ (xn) < ε/2 , |xnk

− x| < ε/2 and 1/k < ε/2 for k ≥ kε.

Then

ϕm (ym)− lim
n→∞

Φ (xn) = (ϕm (ym)− Φ (xnk
)) +

(
Φ (xnk

)− lim
n→∞

Φ (xn)

)
< ε

and |ym − x| < ε for m ≥ Nkε , by (7.7) and (7.8). Hence yn → x as m →∞ and

(7.9) lim
n→∞

ϕn (yn) ≤ lim
n→∞

Φ (xn) .

From (7.9), using again the definition of Φ, we get Φ (x) ≤ lim
n→∞

Φ (xn), and so Φ is l.s.c. We

have already seen that D ⊂ D̃ and Φ is proper by (C4.a), which completes the proof.

Next we prove that B is continuous on the level sets of D with respect to Φ.

Lemma 7.4. B is continuous on Dα for each α ≥ 0.

Proof. Set α > 0, x ∈ Dα and δ > 0. By Lemma 7.2, there is a sequence {xn}, xn ∈ Dn, such
that xn → x as n →∞ and lim

n→∞
ϕn (xn) ≤ α. Let ε > 0 and denote γ = sup

n≥1
ϕn (xn) < ∞.

Let γ = max {α + δ, γ} and let r = r (ε, γ, {xn} , x) be the constant given by Lemma 4.2.
We will prove that each y ∈ Dα with |y − x| ≤ r/2 satisfies |By −Bx| ≤ ε.

Let y ∈ Dα with |y − x| ≤ r/2. From Lemma 7.2 one obtains a sequence {yn}, yn ∈ Dn,
yn → y as n →∞ and lim

n→∞
ϕn (yn) = Φ (y) .

Let N ≥ 1 such that

(7.10) |xn − x| < r/4 , ϕn (yn) ≤ α + δ and |yn − y| < r/4 for each n ≥ N .

We define a sequence ỹn by

ỹn =

{
xn for n < N

yn for n ≥ N.

One can see that ỹn ∈ Dn,γ for n ≥ 1 and, since

|xn − ỹn| =

{
0 for n < N

|xn − yn| for n ≥ N,

the inequalities in (7.10) imply that sup
n≥1

|xn − ỹn| ≤ r.

Then, by Lemma 4.2, sup
n≥1

|Bnxn −Bnỹn| ≤ ε. Using (C3) one obtains that |By −Bx| ≤

ε, which finishes the proof of Lemma 7.4.
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We now employ condition (C4.b) to show that (C2) is verified.
Set α > 0 , δ > 0 and x ∈ Dα. By Lemma 7.2, there is a sequence {xn}, xn ∈ Dn, xn → x

as n →∞ and lim
n→∞

ϕn (xn) = Φ (x). This implies that

ϕn (xn) < Φ (x) + δ, for n ≥ Nδ,x great enough.

We define the sequence {x̃n} by

x̃n =

{
xβ

n for 0 ≤ n ≤ Nδ,x − 1

xn for n ≥ Nδ,x,

where the xβ
n are arbitrary elements in Dn,β given by (C4.b).

Let γ = max (α + δ, β). Then x̃n ∈ Dn,γ for each n ≥ 1 and x̃n → x as n → ∞, so
condition (C2) is satisfied. We remark that if D is closed then Dα = D∩{x ∈ X; Φ (x) ≤ α}
is also closed. If the closedness of the level sets can be obtained by other methods, then the
closedness of D is unnecessary. We also observe that up to now we have used only (C1),
(C2)′, (C3) and (C4.b).

Applying Theorems 2.1 and 5.1 we obtain the following generation theorem.

Theorem 7.1. Let Φ be the functional defined by (7.2). Suppose that conditions (C1), (C3),
(C4), (EC) and (S) are satisfied.

Then there exists a nonlinear semigroup S = {S (t) ; t ≥ 0} on D, satisfying

(7.11) S (t) x = T (t) x +

∫ t

0

T (t− s) BS (s) xds,

(7.12) Φ (S (t) x) ≤ eat (Φ (x) + bt) for t ≥ 0 and x ∈ D.

Moreover, if x ∈ D and {xn} is a {ϕn}-bounded sequence with xn → x as n → ∞, then
Sn (t) xn → S (t) x and the convergence is uniform on bounded subintervals of [0,∞).

Proof. Set α > 0 and ε > 0. Let x be an arbitrary element of Dα. By Lemma 7.2, there is
a sequence {xn}, xn ∈ Dn, xn → x as n →∞ with lim

n→∞
ϕn (xn) = Φ (x).

Applying Theorem 4.1 we get

(7.13) lim
h↓0

[
sup
n≥1

(1/h) |Tn (h) xn + hBnxn − Sn (h) xn|
]

= 0,

and hence we can choose h ∈ (0, ε] such that

(7.14) |Tn (h) xn + hBnxn − Sn (h) xn| < hε/3 for each n ≥ 1

and also, by (EC),

(7.15) sup
n≥1

|Sn (h) xn| ≤ M for some M < ∞.
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For this h, we obtain also

(1/h) |Tn (h) xn + hBnxn − T (h) x− hBx| ≤ (1/h) |T (h) x− Tn (h) xn|+ |Bnxn −Bx|
(7.16)

≤ ε/3

for n ≥ N1. Using the inequality

lim
n→∞

ϕn (Sn (h) xn) ≤ eah (Φ (x) + bh)

and (7.15), one gets from (C4.c) that lim
n→∞

d (Sn (h) xn, Dδ) = 0, for each δ > eah (Φ (x) + bh) .

Let γ = eah (Φ (x) + (b + ε) h). One can find some n and xh ∈ Dγ such that

(7.17) |Sn (h) xn − xh| ≤ hε/3 for each k ≥ 1.

This yields

(1/h) |T (h) x + hBx− xh| ≤ (1/h) |T (h) x + hBx− Tn (h) xn − hBnxn|
+ (1/h) |Sn (h) xn − xh|+ (1/h) |Tn (h) xn + hBnxn − Sn (h) xn|

< ε

by (7.14), (7.16) and (7.17), and so the subtangential condition (II.2) in Theorem 2.1 holds.
We now verify the semilinear stability condition.

Let α > 0, β > α and x, y ∈ Dα. Then, by Lemma 7.2, there are sequences {xn},
{yn}, xn ∈ Dn, yn ∈ Dn for all n, xn → x, yn → y as n → ∞ and lim

n→∞
ϕn (xn) = Φ (x),

lim
n→∞

ϕn (yn) = Φ (y). Thus xn ∈ Dn,β and yn ∈ Dn,β for n ≥ N great enough. Then

lim
h↓0

(1/h) [|T (h) (x− y) + h (Bx−By)| − |x− y|]

= lim
h↓0

(1/h)
[

lim
n→∞

(|Tn (h) (xn − yn) + h (Bnxn −Bnyn)| − |xn − yn|)
]

and from (S) and (7.13) one gets

lim
h↓0

(1/h) [|T (h) (x− y) + h (Bx−By)| − |x− y|] ≤ lim
h↓0

(1/h)
[
eω1(β,h)h − 1

]
|x− y|

= lim
h↓0

ω1 (β, h) |x− y| .

Since β > α was arbitrary, the semilinear stability condition is also proved. We also observe
that the hypotheses of Theorem 5.1 are verified, which finishes the proof.
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