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Abstract. Given a linear operator A which satisfies a generalized dissipativity condition

in terms of a “uniqueness function” w and its nonlinear continuous perturbation B in a real

Banach space X, we discuss the construction of a nonlinear semigroup S providing mild

solutions for the semilinear abstract Cauchy problem (SP) u′ = (A + B)u(t), t > 0 and

u(0) = x. It is shown that a subtangential condition and a semilinear stability condition
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example to which these generation results are applicable is also provided.
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1 Introduction

Since the fundamental paper [1] of Crandall and Liggett has been published,
generation theory for nonlinear semigroups on arbitrary Banach spaces has
evolved into a well-established subject, being used to treat a broad class
of mathematical models due to its considerable unifying effect. A signifi-
cant improvement of their theory has been made by Kobayashi in [6], who
replaced the range condition used in [1] with a much less restrictive assump-
tion, called the tangency range condition. Further, in their later paper [7],
Kobayashi and Tanaka also succeeded in weakening Crandall and Liggett’s
classical dissipativity condition to a more general assumption of dissipativity
with respect to a so-called uniqueness function, therefore opening the way for

2Partially supported by the Grant-in-Aid for Scientific Research (No. 02F00034) and
the fund of Heisei 17 Joint reseach project in Graduate School of Environment and Infor-
mation Sciences, Yokohama National University.
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dealing with problems which fall outside the scope of Crandall and Liggett’s
theory.

However, in many important cases use is made of operators that can
be decomposed as sums of linear dissipative operators and their nonlinear,
continuous and possibly nondissipative perturbations. While these semilinear
models have been found to describe accurately phenomena which exhibit
nonlinear features, the particular structure of the operators involved in the
mathematical model leads to significant qualitative properties of the solutions
not appearing in the fully nonlinear case.

Of particular importance are generation theorems for nonlinear semi-
groups on arbitrary Banach spaces, in terms of necessary and sufficient con-
ditions. As seen by Webb in [10], for a given nonlinear semigroup it is not
always possible to associate in the classical sense a generator with a reason-
ably large domain, and this generator does not necessarily determine uniquely
the semigroup even if it is densely defined. Hence one cannot expect a full
equivalent of the celebrated Hille-Yosida theorem for the nonlinear case.

The aim of this paper is to study the generation of nonlinear semigroups
associated to the semilinear problem

(SP)

{
u′(t) = (A + B)u(t), t > 0;
u(0) = x ∈ D,

where A is the generator of a C0-contraction semigroup on a Banach space
(X, | · |) and B : D → X is a nonlinear, continuous perturbation defined on
the closed set D ⊂ X. It is proved that the combination of a subtangential
condition, in the form

lim inf
h↓0

(1/h)d(T (h)x + hBx,D) = 0 for x ∈ D,

and of a semilinear stability condition, given as

lim inf
h↓0

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|)

≤ w(|x− y|) for x, y ∈ D,

where w is an increasing uniqueness function, is a necessary and sufficient
condition for the generation of a nonlinear semigroup S which provides mild
solutions to (SP) and also satisfies the integral inequality

|S(t)x− S(t)y| ≤ |S(s)x− S(s)y|+
∫ t

s

w(|S(τ)x− S(τ)y|)dτ

for x, y ∈ D and t ≥ s ≥ 0.
The above result is our main theorem, which is fully stated in Section 2.

Its proof makes use of a sequence (un)n≥1 of approximate solutions to (SP)
depending upon small parameters (εn)n≥1, which is constructed using the
subtangential condition. The uniform convergence of (un)n≥1 to a mild so-
lution of (SP) is then shown as εn → 0. Due to the semilinear nature of
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the equation under consideration, the proof does not follow Crandall and
Liggett’s classical argument, but rather a comparison argument, together
with various estimates in terms of solutions of initial value problems for spe-
cific ordinary differential equations which involve the uniqueness function
w.

Since the semilinear stability condition is not standard, even though it
can be seen that it is well-suited to the semilinear structure of the problem
under consideration, some significant situations in which this condition is
satisfied are indicated. It is seen that if B is dissipative with respect to the
uniqueness function w, then the semilinear stability condition follows from
the subtangential condition and also that if the semilinear stability condition
is satisfied, then the semilinear operator A + B is strongly dissipative with
respect to the same uniqueness function w mentioned in the statement of
the semilinear stability condition. Moreover, an important feature of this
condition is that it guarantees the uniqueness of the mild solution to (SP)
for fixed initial data.

We use the main ideas of the approach devised (for the particular case
w(r) = w0r) in Iwamiya, Oharu and Takahashi [5], to which our paper is
related. Actually, the main result in [5] can be obtained as a particular case
of our Theorem 2.1. Furthermore, some results and methods from Kobayashi
and Tanaka [7], Nakagawa and Tanaka [9] and Iwamiya [4] are employed in
order to complete our argument.

Our abstract theory is employed to establish the existence of a nonlinear
semigroup which provides positive mild solutions for a concrete semilinear
problem.

2 Main result

Let X be a real Banach space with norm |·|. We define the semiinner products
[·, ·]± on X by

[x, y]− = lim
h↑0

|x + hy| − |x|
h

= sup
h<0

|x + hy| − |x|
h

and

[x, y]+ = lim
h↓0

|x + hy| − |x|
h

= inf
h>0

|x + hy| − |x|
h

for all x, y ∈ X. We also define B(x0, r) = {x ∈ X, |x − x0| ≤ r} and
d(x0, D) = inf{|x0 − y|; y ∈ D} for x0 ∈ X, D ⊂ X and r > 0. Given a
continuous function g : R → R, we denote by D+, D+, D−, D− its Dini
derivatives, defined respectively by

(D+g)(t) = lim sup
h↓0

g(t + h)− g(t)
h

; (D+g)(t) = lim inf
h↓0

g(t + h)− g(t)
h

;
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(D−g)(t) = lim sup
h↑0

g(t + h)− g(t)
h

; (D−g)(t) = lim inf
h↑0

g(t + h)− g(t)
h

.

By a uniqueness function we mean a function w : [0,∞) → R which is
continuous and satisfies condition (U) below.

(U) w(0) = 0 and r ≡ 0 is the unique solution of the initial value problem
{

r′(t) = w(r(t)), t > 0;
r(0) = 0.

An one-parameter family S = {S(t); t ≥ 0} of possibly nonlinear operators
from D into itself is called a nonlinear semigroup on D if it satisfies the two
properties below.

(S1) For s, t ≥ 0 and x ∈ D, S(t + s)x = S(t)S(s)x and S(0)x = x.
(S2) For x ∈ D, u(·) = S(·)x is continuous on [0,+∞).

Given an operator A : D(A) ⊂ X → X, it is said that A is dissipative,
respectively strongly dissipative with respect to a continuous function w if

[x− y, x′ − y′]− ≤ w(|x− y|) for all [x, x′], [y, y′] ∈ A,

respectively

[x− y, x′ − y′]+ ≤ w(|x− y|) for all [x, x′], [y, y′] ∈ A.

If w ≡ 0, one obtains the classical definition of a dissipative, respectively of
a strongly dissipative operator, while if w(r) = w0r, then the operator A is
said to be w0-dissipative, respectively w0-strongly dissipative.

We consider the initial value problem

(SP)

{
u′(t) = (A + B)u(t), t > 0;
u(0) = x ∈ D,

where D is a closed subset of X and the operators A : D(A) ⊂ X → X and
B : D → X satisfy the following hypotheses

(A) A generates a C0-contraction semigroup T = {T (t); t ≥ 0} on X;
(B) B : D → X is continuous.

It is then said that a function u ∈ C([0,∞);X) is a mild solution to (SP) if
u(t) ∈ D for t ≥ 0 and the integral equation

u(t) = T (t)x +
∫ t

0

T (t− s)Bu(s)ds

is satisfied for each t ≥ 0.
Our main result can now be stated as follows.
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Theorem 2.1. Suppose that the operators A and B satisfy hypotheses (A),
respectively (B) and the function w : [0,∞) → R is increasing, continuous
and satisfies (U). The following statements are then equivalent.

(I) There is a nonlinear semigroup S = {S(t); t ≥ 0} on D such that

(I.a) S(t)x = T (t)x +
∫ t

0

T (t− s)BS(s)xds;

(I.b) |S(t)x− S(t)y| ≤ |S(s)x− S(s)y|+
∫ t

s

w(|S(τ)x− S(τ)y|)dτ

for x, y ∈ D and t ≥ s ≥ 0.

(II) The operators A and B satisfy the subtangential condition and the semi-
linear stability condition stated below

(II.a) lim inf
h↓0

(1/h)d(T (h)x + hBx,D) = 0 for x ∈ D;

(II.b) lim inf
h↓0

(1/h)(|T (h)(x − y) + h(Bx − By)| − |x − y|) ≤ w(|x − y|)
for x, y ∈ D.

In classical semigroup generation theory, condition (I.b) is replaced by a
condition affirming that each S(t) is a Lipschitz or locally Lipschitz operator
in a prescribed sense, for example with “S is a contraction semigroup” or
with another condition having a similar meaning. With regard to this, by a
comparison argument (see Proposition 4.2), condition (I.b) implies that

(QL) |S(t)x− S(t)y| ≤ m(t; |x− y|) for t ∈ [0, τ(|x− y|)),
where m(t; |x− y|) is the maximal solution of the initial value problem

{
r′(t) = w(r(t)), t > 0;
r(0) = |x− y|

and τ(|x − y|) is its largest interval of existence, that is, a sort of Lipschitz
estimate. Here, we cannot usually affirm that τ(|x−y|) = ∞, so the estimate
(QL) is not global.

However, we have used in this paper condition (I.b) instead of a Lipschitz
estimate of type (QL) since if w(r) = w0r, then (I.b) becomes a well-known
integral estimate, widely used in the theory of nonlinear semigroups generated
by dissipative operators. Notice the difference between condition (I.b) given
here and its similar counterpart in Iwamiya, Oharu and Takahashi [5], where
the global existence of m(t; |x− y|) is a priori assured.

3 Basic comparison results

Let w ∈ C([0,∞)) with w(0) ≥ 0 and let δ, α ≥ 0. We shall denote by
mδ(t;α) the maximal solution of the initial value problem

{
r′(t) = w(r(t)) + δ, t > 0;
r(0) = α
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and by [0, τδ(α)) its largest interval of existence. When δ = 0, we shall
sometimes omit the subscript δ, since there is no danger of confusion.

The following basic comparison result (Theorem 1.6.1 in Lakhsmikantham
and Leela [8]), together with some of its corollaries, will be used to prove esti-
mations which ensure the convergence of a sequence (un)n≥1 of approximate
solutions to (SP) depending on small error parameters to the unique exact
mild solution of (SP).

Theorem 3.1. Suppose that Ω ⊂ R2 is open and g ∈ C(Ω). Let (t0, u0) ∈ Ω
and let [t0, t0 + τ) be the largest interval of existence on which the maximal
solution m(t; t0, u0) of the initial value problem

{
u′(t) = g(t, u(t)), t > 0;
u(t0) = u0

exists. Let x ∈ C([t0, t0 + τ)) such that (t, x(t)) ∈ Ω for t ∈ [t0, t0 + τ),
x(t0) ≤ u0 and Dx(t) ≤ g(t, x(t)) for some fixed Dini derivative D and for
t ∈ [t0, t0 +τ)\N , N being an at most countable set. Then x(t) ≤ m(t; t0, u0)
for t ∈ [t0, t0 + τ).

Note that in order to prove that a continuous function u : [t0, t0 +τ) → R
is decreasing, it suffices to show that Du ≤ 0 for t ∈ [t0, t0 + τ)\N , D being
any Dini derivative and N being an at most countable set.

As a consequence, the following fundamental properties of the nonextend-
able maximal solution are obtained in Kobayashi and Tanaka [7], Lemma 5.1.

Lemma 3.1. Let δ0, α0 ≥ 0. Then the following properties (i) through (iii)
hold

(i) If α ≥ α0 and δ ≥ δ0, then τδ(α) ≤ τδ0(α0) and mδ(t;α) ≥ mδ0(t;α0)
for t ∈ [0, τδ(α)).

(ii) If α ↓ α0 and δ ↓ δ0, then τδ(α) ↑ τδ0(α0) and mδ(t;α) ↓ mδ0(t;α0)
uniformly on every compact subinterval of [0, τδ(α)).

(iii) If 0 ≤ s < τδ0(α0), then τδ0(α0)− s ≤ τδ0(mδ0(s;α0)) and
mδ0(t;mδ0(s;α0)) = mδ0(t + s;α0) for t ∈ [0, τδ0(α0)− s).

Among other purposes, the following Lemma will be used to establish the
uniqueness of the mild solution for the semilinear problem (SP).

Lemma 3.2. Let u, v ∈ C([0, τ);X) satisfy the differential inequality

D(|u(t)− v(t)|) ≤ w(|u(t)− v(t)|) for t ∈ [0, τ)\N,

where D is any Dini derivative and N is an at most countable set. Then

(i) |u(t)− v(t)| ≤ m(t; |u(0)− v(0)|) for t ∈ [0, τ) ∩ [0, τ(|u(0)− v(0)|));
(ii) |u(t)− v(t)| ≤ |u(s)− v(s)|+ ∫ t

s
w(|u(ξ)− v(ξ)|)dξ for 0 ≤ s ≤ t < τ.

Conversely, if (ii) holds, then D+(|u(t)−v(t)|) ≤ w(|u(t)−v(t)|) for t ∈ [0, τ).
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Proof. The first claim follows from Theorem 3.1. For the proof of the second
claim, let us define h : [0, τ) → R by

h(t) = |u(t)− v(t)| −
∫ t

0

w(|u(ξ)− v(ξ)|)dξ.

It is seen that h ∈ C([0, τ);X) and

Dh(t) = D(|u(t)− v(t)|)− w(|u(t)− v(t)|) ≤ 0 for t ∈ [0, τ)\N .

It follows that h is decreasing, fact which implies the second estimate. The
proof of the converse implication is obvious.

Note that in the above results the function w is neither required to be an
uniqueness function, nor assumed to be increasing.

Suppose now that w is increasing, in addition to its continuity. One
obtains the following result.

Lemma 3.3. Suppose that w is increasing. Then m(t;u0)+α ≤ m(t;u0 +α)
for all t ∈ [0, τ(u0 + α)) and u0, α ∈ R+.

Proof. Let us denote u1(t) = m(t;u0) + α and u2(t) = m(t;u0 + α). Then

u′1(t) = m′(t;u0) = w(m(t;u0)) = w(u1(t)− α) ≤ w(u1(t))
u′2(t) = m′(t;u0 + α) = w(m(t;u0 + α)) = w(u2(t)).

Since u1(0) = u2(0) = u0 + α, the conclusion follows from Theorem 3.1.

Let us now particularize w to be an uniqueness function, not necessarily
increasing. Given K > 0, we define

wK(t) =

{
w(t) if t ∈ [0,K];
w(K) if t > K.

We shall also denote by mK
δ (t;α) the maximal solution of the initial value

problem {
r′(t) = wK(r(t)) + δ, t > 0;
r(0) = α.

Note that, since wK(·) is bounded, τK
δ (α) = ∞ for any δ, α ∈ R+. With these

notations, it is seen that the following Lemma (Lemma 5.1 in Kobayashi and
Tanaka [7]) holds.

Lemma 3.4. Suppose that w is an uniqueness function and let K > 0. The
following properties (i) and (ii) hold.

(i) If α ↓ α0 and δ ↓ δ0, then mK
δ (t;α) ↓ mK

δ0
(t;α0) uniformly on any

compact interval [0, T ].
(ii) mK

0 (t; 0) = 0 for t ≥ 0.

For related comparison results see also Iwamiya [4], Section 3.
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4 Proof of the main theorem

We first prove the implication from (I) to (II). Let x ∈ D. Since u(·) = S(·)x
is a mild solution to (SP), it is seen from the definition of a mild solution that
limh↓0(1/h)(S(h)x − T (h)x) = Bx. Hence for each ε > 0 there is δ ∈ (0, ε]
such that (1/h)|S(h)x− T (h)x− hBx| ≤ ε for all h ∈ (0, δ], and therefore

(1/h)d(T (h)x + hBx,D) ≤ ε for all h ∈ (0, δ],

from which we obtain (II.a). Also, we note that

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|)
≤ (1/h)(|T (h)x + hBx− S(h)x|+ |T (h)y + hBy − S(h)y|)

+ (1/h)(|S(h)x− S(h)y| − |x− y|).

Passing to inferior limit as h ↓ 0, and using the definition of a mild solution
and the integral inequality (I.b), we obtain that

lim inf
h↓0

(1/h)
(|T (h)(x− y) + h(Bx−By)| − |x− y|)

≤ lim inf
h↓0

(1/h)
(|S(h)x− S(h)y| − |x− y|)

≤ lim inf
h↓0

(1/h)
∫ h

0

w(|S(s)x− S(s)y|)ds.

Since w is continuous, we obtain (II.b). Therefore, the proof of the implica-
tion from (I) to (II) is completed.

We now prove the implication from (II) to (I), to which we devote the
most part of this section. First, it is seen that the subtangential condition
(II.a) holds uniformly in a local sense, the following result being obtained as
a particular case of Theorem 3.1 from Georgescu and Oharu [2], for ϕ = 0.

Lemma 4.1. Suppose that (II.a) holds. Let x ∈ D, ε ∈ (0, 1) and let r =
r(x, ε) be chosen such that |Bx−By| ≤ ε/4 and sups∈[0,r] |T (s)Bx−Bx| ≤
ε/4 for each y ∈ D ∩ B(x, r). Choose M ≥ 0 satisfying |By| ≤ M for each
y ∈ D∩B(x, r), and define h(x, ε) = sup{h > 0;h(M+1)+sups∈[0,h] |T (s)x−
x| ≤ r}. Let h ∈ [0, h(x, ε)) and y ∈ D satisfy |y−T (h)x| ≤ h(M +1). Then
for each η > 0 with h + η ≤ h(x, ε) there is z ∈ D ∩ B(x, r) satisfying
(1/η)|z − T (η)y − ηBy| ≤ ε.

Remark 4.1. If in particular we let h = 0 and y = x in Lemma 4.1, then it is
seen that for every η > 0 with η ≤ h(x, ε) there is z ∈ D ∩B(x, r) such that
(1/η)|z − T (η)x − ηBx| ≤ ε. This implies that the subtangential condition
(II.a) is equivalent to its stronger form

(II.a)′ lim sup
h↓0

(1/h)d(T (h)x + hBx,D) = 0 for x ∈ D.
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Since the semilinear stability condition (II.b) is not necessarily standard,
even though it seems to be the most suitable “dissipativity-like” condition
for our semilinear problem, we first indicate a significant case in which this
condition is satisfied.

Proposition 4.1. In addition to (A) and (B), assume that (II.a) holds and B
is dissipative with respect to some continuous function w. Then the semilinear
stability condition (II.b) holds for the same choice of w.

Proof. Let ε > 0 and x, y ∈ D. From (II.a)′ we obtain that there are h ∈ (0, ε]
and xh, yh ∈ D such that

|xh − T (h)x− hBx| ≤ hε, |Bxh −Bx| ≤ ε;
|yh − T (h)y − hBy| ≤ hε, |Byh −By| ≤ ε.

Since B is dissipative with respect to the continuous function w, it is seen
that

(1/h)(|xh − yh| − |(xh − yh)− h(Bxh −Byh)|)
≤ [xh − yh, Bxh −Byh]− ≤ w(|xh − yh|).

Using the inequalities above, we obtain that

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|)
≤ (1/h)(|xh − T (h)x− hBx|+ |yh − T (h)y − hBy|+ |xh − yh| − |x− y|)
≤ (1/h)(|xh − yh| − |x− y|) + 2ε

≤ (1/h)(|xh − yh| − |(xh − yh)− h(Bxh −Byh)|)
+ (1/h)(|(xh − yh)− h(Bxh −Byh)| − |x− y|) + 2ε

≤ w(|xh − yh|) + (1/h)|xh − T (h)x− hBx|+ (1/h)|yh − T (h)y − hBy|
+ |Bxh −Bx|+ |Byh −By|+ (1/h)(|T (h)x− T (h)y| − |x− y|) + 2ε

≤ w(|xh − yh|) + (1/h)(|T (h)x− T (h)y| − |x− y|) + 6ε.

Since T is a contraction semigroup and w is continuous, taking the inferior
limit as h ↓ 0 we obtain

lim inf
h↓0

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|) ≤ w(|x− y|) + 6ε.

Since ε > 0 is arbitrary, we obtain the required conclusion.

As pointed out in [5, Proposition 3.2], one can easily see that

lim
h↓0

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|)

= [x− y, (A + B)x− (A + B)y]+

for each x, y ∈ D(A) ∩D. Therefore the semilinear stability condition (II.b)
implies the strong dissipativity of the semilinear differential operator A + B
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with respect to the continuous function w. This is a natural result, since
the subtangential condition (II.a) is weaker than the classical range condi-
tion, which couples the dissipativity condition, so in our setting we need an
assumption stronger than the latter in order to prove our generation result.

An important feature of the classical dissipativity condition, to which
our semilinear stability condition is related, is that it guarantees stability
results which imply the uniqueness of the mild solution for given initial data.
We shall see now that our semilinear stability condition (II.b) yields similar
properties.

Proposition 4.2. Suppose that w : [0,∞) → R is a continuous function,
condition (II.b) is satisfied and u and v are mild solutions to (SP) with initial
data u(0) = x, respectively v(0) = y. Then

(4.1) |u(t)− v(t)| ≤ m(t; |x− y|) for t ∈ [0, τ(|x− y|)).
In particular, if w is an uniqueness function and x = y, then u ≡ v on
[0, τ(|x− y|)).
Proof. Let t ∈ [0, τ(|x−y|)) and h > 0 such that t+h ∈ [0, τ(|x−y|)). From
the definition of a mild solution to (SP) we obtain

(1/h)(|u(t + h)− v(t + h)| − |u(t)− v(t)|)

=(1/h)
∣∣∣∣T (h)(u(t)− v(t)) +

∫ t+h

t

T (t + h− s)(Bu(s)−Bv(s))ds

∣∣∣∣
− (1/h)|u(t)− v(t)|

≤(1/h)(|T (h)(u(t)− v(t)) + h(Bu(t)−Bv(t))| − |u(t)− v(t)|)

+ (1/h)
∫ t+h

t

|T (t + h− s)Bu(s)−Bu(t)|ds

+ (1/h)
∫ t+h

t

|T (t + h− s)Bv(s)−Bv(t)|ds.

From (II.b) and the continuity of B and T , we obtain that

D+(|u(t)− v(t)|) ≤ w(|u(t)− v(t)|) for all t ∈ [0, τ(|x− y|)).
The desired inequality (4.1) follows now from Lemma 3.2. Also, if w is an
uniqueness function, then m(t; 0) = 0 for t > 0, and so (4.1) implies our local
uniqueness result.

Once we have proved the previous stability result, we are ready to show
that the global existence of the mild solutions to (SP) may be deduced from
the corresponding local existence result via a classical extendability argu-
ment.

Proposition 4.3. Suppose that w : [0,∞) → R is a continuous function,
w(0) ≥ 0, (II.b) holds and that for each x ∈ D there is Tx > 0 such that a
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mild solution u(·) of (SP) with initial data u(0) = x exists on [0, Tx]. Then
for each x ∈ D there exists a global mild solution of (SP) with initial data
u(0) = x.

Proof. Given x ∈ D, denote

Tmax
x = sup{T > 0; there exists a mild solution u(·) of (SP)

with initial data u(0) = x on [0, T ]}.

We have to show that Tmax
x = ∞. Suppose to the contrary that Tmax

x <
∞. We now prove that limt↑Tmax

x
u(t) exists and lies in D. Then we may

define u(Tmax
x ) = limt↑Tmax

x
u(t) and use the local existence result to extend

u beyond Tmax
x , hence contradicting Tmax

x ’s definition. Let h > 0. Using
Proposition 4.2, one obtains

|u(t + h)− u(t)| ≤ m(t; |x− u(h)|) for t ∈ [0, Tmax
x − h) ∩ [0, τ(|x− u(h)|)).

Since limh↓0 |u(h)−x| = 0, using Lemma 3.1 (ii) it is seen that τ(|x−u(h)|) >
Tmax

x for small h, and so

sup{|u(t + h)− u(t)|; t ∈ [0, Tmax
x − h)}

≤ sup{m(t; |x− u(h)|); t ∈ [0, Tmax
x ]} for small h.

Using again Lemma 3.1, it is seen that

lim sup
h↓0

sup{|u(t + h)− u(t)|; t ∈ [0, Tmax
x − h)}

≤ lim sup
h↓0

sup{m(t; |x− u(h)|); t ∈ [0, Tmax
x ]} = 0.

Hence the limit y = limt↑Tmax
x

u(t) exists and belongs to D. Now let v :
[0, Ty) → X be a mild solution to (SP) with initial data v(0) = y. Then the
function z : [0, Tmax

x + Ty) → X given by

z(t) =

{
u(t), t ∈ [0, Tmax

x );
v(t− Tmax

x ), t ∈ [Tmax
x , Tmax

x + Ty)

is a mild solution to (SP) with initial data z(0) = x, its interval of existence
being strictly larger than [0, Tmax

x ), which is a contradiction.

We now prove our local existence theorem.
A key result which will be used for the construction of the discrete lo-

cal approximate solutions to (SP) is the following lemma, which establishes
the existence of time-discretizing and respectively solution-discretizing se-
quences (ti)0≤i≤N and (xi)0≤i≤N enjoying a number of fundamental proper-
ties. Among these properties (i) through (vi) below, note the importance of
(iii), which yields the a-priori boundedness of the sequence (xi)0≤i≤N .
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Lemma 4.2. Suppose that condition (II.a) is satisfied. Let x ∈ D. Assume
that R > 0 and M > 0 are such that |By| ≤ M for y ∈ D ∩ B(x,R). Let
τ > 0 be small enough to satisfy

τ(M + 1) + sup
t∈[0,τ ]

|T (t)x− x| ≤ R.

Then for each ε ∈ (0, 1) there exist sequences (ti)0≤i≤N and (xi)0≤i≤N such
that

(i) t0 = 0, x0 = x, tN = τ ;
(ii) 0 < ti+1 − ti ≤ ε for 0 ≤ i ≤ N − 1;
(iii) xi ∈ D ∩B(x,R) for 0 ≤ i ≤ N ;
(iv) |xi+1−T (ti+1− ti)xi− (ti+1− ti)Bxi| ≤ (ti+1− ti)ε for 0 ≤ i ≤ N − 1;
(v) |xi − T (ti)x| ≤ ti(M + 1) for 0 ≤ i ≤ N ;
(vi) For 0 ≤ i ≤ N − 1 there is ri ∈ (0, ε] such that |By − Bxi| ≤ ε/4 for

y ∈ B(xi,ri)∩D, supt∈[0,ri] |T (t)Bxi−Bxi| ≤ ε/4 and (ti+1− ti)(M +
1) + supt∈[0,ti+1−ti] |T (t)xi − xi| ≤ ri.

For the proof, see Iwamiya, Oharu and Takahashi [5], Lemma 4.1, or
Georgescu and Oharu [2], Theorem 5.1 (for ϕ = 0).

Now, given a small parameter ε ∈ (0, 1), an approximate solution uε :
[0, τ ] → X to (SP) may be constructed using the finite sequences (ti)0≤i≤N

in [0, τ ] and (xi)0≤i≤N in B(x,R) obtained in the above lemma, as follows

(4.2) uε(t) =

{
T (t− ti)xi + (t− ti)Bxi for t ∈ [ti, ti+1), 0 ≤ i ≤ N − 1;
T (τ − tN−1)xN−1 + (τ − tN−1)BxN−1 for t = τ .

Then for t ∈ [ti, ti+1) and 0 ≤ i ≤ N − 1 we have

|xi+1 − uε(t)| ≤ |xi+1 − T (ti+1 − ti)xi − (ti+1 − ti)Bxi|
+ |T (ti+1 − ti)xi − T (t− ti)xi|+ (ti+1 − t)|Bxi|

≤ (ti+1 − ti)ε + |T (ti+1 − t)xi − xi|+ (ti+1 − t)|Bxi|
≤ (ti+1 − ti)(M + 1) + |T (ti+1 − t)xi − xi| ≤ ε

and in a similar way we may show that |xN − uε(τ)| ≤ ε. Hence

(4.3) d(uε(t), D) ≤ ε for t ∈ [0, τ ]

(note, however, that uε(·) does not necessarily take its values in D).
Now, for any small parameter ε > 0, (4.2) gives a method to construct

an approximate solution uε : [0, τ ] → X to (SP) which satisfies (4.3). Our
purpose is to show that, for a given null sequence (εn)n≥1, the correspond-
ing sequence of approximate solutions (uεn

)n≥1 is uniformly convergent to a
continuous function u : [0, τ ] −→ X, which is a mild solution to (SP). The
uniqueness of the mild solution will then be obtained from Proposition 4.2.

To this goal, we need to estimate the difference between two approximate
solutions uε and uε̂ corresponding to different small parameters ε and ε̂. An
important step in this direction is provided by the following lemma.
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Lemma 4.3. Assume that conditions (II.a) and (II.b) are satisfied. Let
x, x̂ ∈ D and ε, ε̂ ∈ (0, 1/3). Suppose that r = r(x, ε) and r̂ = r̂(x̂, ε̂) are real
numbers such that 0 < r ≤ ε, |Bx−By| ≤ ε/4, |By| ≤ M(x, ε) for y ∈ D ∩
B(x, r), sups∈[0,r] |T (s)Bx−Bx| ≤ ε/4 and also 0 < r̂ ≤ ε̂, |Bx̂−By| ≤ ε/4,
|By| ≤ M̂(x̂, ε̂) for y ∈ D ∩ B(x̂, r̂), sups∈[0,r̂] |T (s)Bx̂ − Bx̂| ≤ ε̂/4 for
y ∈ D ∩ B(x̂, r̂) and for some real numbers M(x, ε) and M̂(x̂, ε̂). Choose
M > max{M(x, ε), M̂(x̂, ε̂)}. Denote

h(x, ε) = sup
{

h > 0;h(M + 1) + sup
s∈[0,h]

|T (s)x− x| ≤ r
}

,

ĥ(x̂, ε̂) = sup
{

h > 0;h(M + 1) + sup
s∈[0,h]

|T (s)x̂− x̂| ≤ r̂
}

and let y, ŷ ∈ D, h ∈ [0, h(x, ε)) and ĥ ∈ [0, ĥ(x̂, ε̂)) such that |y − T (h)x| ≤
h(M + 1); |ŷ − T (ĥ)x̂| ≤ ĥ(M + 1). Then for each δ > 0 and η > 0 such
that h + η ≤ h(x, ε) and ĥ + η ≤ ĥ(x̂, ε̂) there exist z ∈ D ∩ B(x, r) and
ẑ ∈ D ∩B(x̂, r̂) such that

|z − T (η)y − ηBy| < 2ηε;(4.4)
|ẑ − T (η)ŷ − ηBŷ| < 2ηε̂;(4.5)

|z − ẑ| ≤ m
|x−x̂|+ε+ε̂
δ+ε+ε̂ (η; |y − ŷ|).(4.6)

Proof. Note first that y ∈ D ∩B(x, r), since

|y − x| ≤ |y − T (h)x|+ |T (h)x− x| ≤ h(M + 1) + |T (h)x− x| ≤ r,

and also ŷ ∈ D∩B(x̂, r̂). We construct sequences (sn)n≥0, (xn)n≥0, (x̂n)n≥0

satisfying

(i) s0 = 0,x0 = y, x̂0 = ŷ;
(ii) 0 < sn < sn+1 and limn→∞ sn = η;
(iii) |xn − T (sn − sn−1)xn−1 − (sn − sn−1)Bxn−1| ≤ (sn − sn−1)ε;
(iv) |x̂n − T (sn − sn−1)x̂n−1 − (sn − sn−1)Bx̂n−1| ≤ (sn − sn−1)ε̂;
(v) |T (sn − sn−1)(xn−1 − x̂n−1) + (sn − sn−1)(Bxn−1 −Bx̂n−1)|

≤ |xn−1 − x̂n−1|+ (sn − sn−1)w(|xn−1 − x̂n−1|) + (sn − sn−1)δ;
(vi) |xn − T (sn)x0| ≤ sn(M + 1);
(vii) |x̂n − T (sn)x̂0| ≤ sn(M + 1);
(viii) xn ∈ B(x, r) ∩D;
(ix) x̂n ∈ B(x̂, r̂) ∩D

for each n ≥ 0, properties (iii), (iv) and (v) being not formulated for n = 0.
Set s0 = 0, x0 = y and x̂0 = ŷ, so that (i), (vi), (vii), (viii) and (ix) are
satisfied for n = 0. Suppose now that sk, xk and x̂k, k = 0, 1, 2, . . . , N have
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been defined in such a way that (i), (iii) through (ix) and the first half of (ii)
are satisfied. Define

hN = sup{ξ > 0; sN + ξ ≤ η; |T (ξ)(xN − x̂N ) + ξ(BxN −Bx̂N )|
≤ |xN − x̂N |+ ξw(|xN − x̂N |) + ξδ}.

From (II.b) one may see that hN > 0. Take hN ∈ (hN/2, hN ) and define
sN+1 = sN +hN so that (v) is satisfied for n = N +1. From (II.a)′, one may
find xN+1, x̂N+1 ∈ D such that

|xN+1 − T (sN+1 − sN )xN − (sN+1 − sN )BxN | ≤ (sN+1 − sN )ε;
|x̂N+1 − T (sN+1 − sN )x̂N − (sN+1 − sN )Bx̂N | ≤ (sN+1 − sN )ε̂,

that is, (iii) and (iv) are satisfied for n = N + 1. Then

|xN+1 − T (sN+1)x0| ≤ (sN+1 − sN )M + |xN − T (sN )x0|+ (sN+1 − sN )ε
≤ sN+1(M + 1)

and similarly |x̂N+1−T (sN+1)x̂0| ≤ sN+1(M+1), so (vi) and (vii) are proved
for n = N + 1. Also,

|xN+1 − T (sN+1 + h)x|
≤ |xN+1 − T (sN+1)x0|+ |T (sN+1)x0 − T (sN+1 + h)x|
≤ (sN+1 + h)(M + 1)

and similarly |x̂N+1 − T (sN+1 + ĥ)x̂| ≤ (sN+1 + ĥ)(M + 1). Therefore,

|xN+1 − x| < (sN+1 + h)(M + 1) + |T (sN+1 + h)x− x| ≤ r(x, ε)

and also |x̂N+1 − x̂| < r̂(x̂, ε̂), so (viii) and (ix) are satisfied for n = N + 1.
It now remains to show that limn→∞ sn = η. From (iii), (iv) and Lemma 5.2
in Iwamiya [4], we see that (xn)n≥0 and (x̂n)n≥0 are convergent. We shall
denote their limits by z, respectively by ẑ. Suppose that limn→∞ sn = s < η.
Then (II.b) implies that there exists ξ ∈ (0, η) such that

(4.7) |T (ξ)(z − ẑ) + ξ(Bz −Bẑ)| ≤ |z − ẑ|+ ξw(|z − ẑ|) + (1/2)ξδ.

Choose N ≥ 1 so that s−sn ≤ ξ/2 for each n ≥ N and define ξn = s−sn +ξ.
It is seen that sn + ξn = s+ ξ < η and also ξn = s− sn + ξ > ξ ≥ 2(s− sn) >
2hn ≥ hn for each n ≥ N . This yields that

|T (ξn)(xn − x̂n) + ξn(Bxn −Bx̂n)| > |xn − x̂n|+ ξnw(|xn − x̂n|) + ξnδ

for each n ≥ N . Passing to limit as n →∞, we obtain that

|T (ξ)(z − ẑ) + ξ(Bz −Bẑ)| ≥ |z − ẑ|+ ξw(|z − ẑ|) + ξδ,
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which contradicts (4.7). We now prove the required estimates (4.4), (4.5)
and (4.6). It is easy to see that

xn − T (sn)y − snBy

=
n−1∑

k=0

T (sn − sk+1)[xk+1 − T (sk+1 − sk)xk − (sk+1 − sk)Bxk]

+
n−1∑

k=0

(sk+1 − sk)T (sn − sk+1)Bxk − snBy,

and we can therefore obtain

|xn − T (sn)y − snBy|

≤
n−1∑

k=0

|xk+1 − T (sk+1 − sk)xk − (sk+1 − sk)Bxk|

+
n−1∑

k=0

(sk+1 − sk)|Bxk −Bx|

+
n−1∑

k=0

(sk+1 − sk)|T (sn − sk+1)Bx−Bx|+ sn|Bx−By|

≤
n−1∑

k=0

(sk+1 − sk)ε +
n−1∑

k=0

(sk+1 − sk)|Bxk −Bx|

+
n−1∑

k=0

(sk+1 − sk)|T (sn − sk+1)Bx−Bx|+ sn|Bx−By|

≤ snε + snε/4 + snε/4 + snε/4.

Then
|xn − T (sn)y − snBy| ≤ 7snε/4,

and it may be proved in a similar fashion that

|x̂n − T (sn)ŷ −Bŷ| ≤ 7snε̂/4.

Passing to limit in the above estimates we obtain

|z − T (η)y − ηBy| < 2ηε; |ẑ − T (η)ŷ − ηBŷ| < 2ηε̂,

that is, we obtain (4.4) and (4.5). Also, we see that

|xn+1 − x̂n+1| ≤ |xn+1 − T (sn+1 − sn)xn − (sn+1 − sn)Bxn|
+ |x̂n+1 − T (sn+1 − sn)x̂n − (sn+1 − sn)Bx̂n|
+ |T (sn+1 − sn)(xn − x̂n) + (sn+1 − sn)(Bxn −Bx̂n)|

≤ |xn − x̂n|+ (sn+1 − sn)w(|xn − x̂n|) + (sn+1 − sn)(δ + ε + ε̂).

(4.8)
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Since xn ∈ B(x, r)∩D and x̂n ∈ B(x̂, r̂)∩D, one has |xn−x̂n| ≤ |x−x̂|+r+r̂
for n ≥ 0. From (4.8), we see that

|xn+1 − x̂n+1| ≤ |xn − x̂n|+ (sn+1 − sn)w|x−x̂|+r+r̂(|xn − x̂n|)
+ (sn+1 − sn)(δ + ε + ε̂).

(4.9)

Denote

u1(t) = |xn − x̂n|+ tw|x−x̂|+r+r̂(|xn − x̂n|) + t(δ + ε + ε̂),

u2(t) = m
|x−x̂|+r+r̂
δ+ε+ε̂ (t; |xn − x̂n|).

Then

u′1(t) = w|x−x̂|+r+r̂(|xn − x̂n|) + (δ + ε + ε̂)

≤ w|x−x̂|+r+r̂(u1(t)) + (δ + ε + ε̂),

u′2(t) = w|x−x̂|+r+r̂(u2(t)) + (δ + ε + ε̂)

and also
u1(0) = |xn − x̂n| = u2(0).

From Theorem 3.1, one obtains that u1(t) ≤ u2(t) for t ≥ 0, so setting
t = sn+1 − sn and using (4.9) we obtain that

|xn+1 − x̂n+1| ≤ m
|x−x̂|+r+r̂
δ+ε+ε̂ (sn+1 − sn; |xn − x̂n|).

Using Lemma 3.1 (iii) and noting that r ≤ ε, r̂ ≤ ε̂, we obtain by an easy
induction argument that

|xn+1 − x̂n+1| ≤ m
|x−x̂|+ε+ε̂
δ+ε+ε̂ (sn+1 − s0; |x0 − x̂0|).

Passing to limit as n →∞ we obtain the required estimate (4.6).

Remark 4.2. Suppose that (II.a) is satisfied. From Lemma 4.3, one may see
using a limiting argument that condition (II.b) is equivalent to its stronger
form

lim sup
h↓0

(1/h)(|T (h)(x− y) + h(Bx−By)| − |x− y|)

≤ w(|x− y|) for x, y ∈ D.

We are now ready to prove our local existence theorem.

Theorem 4.1. Suppose that (II.a) and (II.b) are satisfied. Let x ∈ D and
let R > 0, M > 0 and τ > 0 be such that |By| ≤ M for y ∈ D ∩ B(x,R)
and τ(M + 1) + supt∈[0,τ ] |T (t)x − x| ≤ R. Then there exists a unique mild
solution u(·) to (SP) on [0, τ ] satisfying the initial condition u(0) = x.
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Proof. Let ε0 ∈ (0, 1/3) and let (εn)n≥1 be any null sequence in (0, ε0). Re-
ferring to Lemma 4.2, for any n ≥ 1 one may construct an auxiliary sequence
(rn

i )Nn
i=0, a time-discretizing sequence (tni )Nn

i=0 in [0, τ ] and an approximating
sequence (xn

i )Nn
i=0 in D ∩ B(x,R) having properties (i) through (vi) listed in

the statement of Lemma 4.2 for ε = εn and N = Nn. Actually, as seen in
Iwamiya, Oharu and Takahashi [5], Proposition 5.1, the above sequences may
be constructed such that, for m > n, the partition Pm = {(tmk )Nm

k=0} is finer
than Pn = {(tni )Nn

i=0}. We also note that |xn
k −xm

l | ≤ 2R for each 1 ≤ k ≤ Nn

and 1 ≤ l ≤ Nm.
We define a sequence of discrete approximate solutions un(·) : [0, τ ] → X

as mentioned before Lemma 4.3, by setting

un(t) =

{
T (t− tni )xn

i + (t− tni )Bxn
i for t ∈ [tni , tni+1) and 0 ≤ i ≤ Nn − 1,

T (τ − tnNn−1)x
n
Nn−1 + (τ − tNn−1)Bxn

Nn−1 for t = τ .

It has already been seen that d(un(t), D) ≤ εn for t ∈ [0, τ ]. We now prove
that (un)n≥1 is uniformly convergent on [0, τ ]. To this end, let t ∈ (0, τ ]
and 1 ≤ n < m. Choose 0 ≤ i < Nn − 1 and 0 ≤ j < Nm − 1 such that
t ∈ [tni , tni+1)∩ [tmj , tmj+1), or let t = τ . We define a subdivision (sl)

j+1
l=0 of [0, t]

by sl = tml for 0 ≤ l ≤ j and sj+1 = t. We plan to estimate |um(t)−un(t)| by
using appropriate points (zl)

j+1
l=0 and (ẑl)

j+1
l=0 with z0 = ẑ0 = x; these points

will be found by Lemma 4.3. To this goal, we note that any sl, 0 ≤ l ≤ j is
a point of Pm, but not necessarily of Pn, so we have to analyze two distinct
situations.

The first situation is the situation in which sl is a common point of Pm

and Pn, that is, sl = tnk for some k. In this case, we may apply Lemma 4.3
for x = xn

k , x̂ = xm
l , y = x, ŷ = x̂, h = ĥ = 0, η = sl+1 − sl, δ = εm (note

that the required hypotheses are automatically satisfied), and find zl+1 and
ẑl+1 satisfying

|zl+1 − T (sl+1 − sl)xn
k − (sl+1 − sl)Bxn

k | < 2(sl+1 − sl)εn,(4.10)
|ẑl+1 − T (sl+1 − sl)xm

l − (sl+1 − sl)Bxm
l | < 2(sl+1 − sl)εm,(4.11)

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1 − sl; |xn
k − xm

l |).(4.12)

The second situation is the situation in which sl is not a common point for
Pn and Pm, that is, sl ∈ (tnk , tnk+1) for some k. In this case, we shall employ
a different choice of y and use Lemma 4.3 in a somehow “asymmetric” way
with respect to the choice of “time-shifting” parameters h and ĥ. Namely,
we let x = xn

k , x̂ = xm
l , y = zl, ŷ = x̂, h = sl − tnk , ĥ = 0, η = sl+1 − sl and

δ = εm. Also, we note that the interval (tnk , tnk+1) may contain more than
one uncommon point sl. For all the uncommon points sl, the choice for the
intermediate comparison value y in Lemma 4.3 will be the corresponding zl

constructed in the previous step.
We first discuss the applicability of Lemma 4.3 in the second situation.

Suppose that tnk = sl0 . If l = l0 + 1, that is, sl is the first uncommon point
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in (tnk , tnk+1), then in order to apply Lemma 4.3 we need to verify first that
|zl − T (sl − tnk )xn

k | ≤ (sl − tnk )(M + 1). Since the previous time-discretizing
point sl0 was a common point for Pn and Pm, (4.10) implies that

|zl0+1 − T (sl0+1 − tnk )xn
k − (sl0+1 − tnk )Bxn

k | ≤ 2(sl0+1 − tnk )εn

and therefore

|zl0+1 − T (sl0+1 − tnk )xn
k | ≤ (sl0+1 − tnk )(M + 2εn) ≤ (sl0+1 − tnk )(M + 1).

Applying Lemma 4.3 for the above-mentioned choice of parameters, we find
zl0+2 and ẑl0+2 such that

|zl0+2 − T (sl0+2 − sl0+1)zl0+1 − (sl0+2 − sl0+1)Bzl0+1|
< 2(sl0+2 − sl0+1)εn

|ẑl0+2 − T (sl0+2 − sl0+1)xm
l − (sl0+2 − sl0+1)Bxm

l | < 2(sl0+2 − sl0+1)εm,

|zl0+2 − ẑl0+2| ≤ m2R+1
2εm+εn

(sl0+2 − sl0+1; |zl0+1 − xm
l |).

If sl0+2 is a second uncommon point in (tnk , tnk+1), we see that

|zl0+2 − T (sl0+2 − tnk )xn
k |

≤ |zl0+2 − T (sl0+2 − sl0+1)zl0+1 − (sl0+2 − sl0+1)Bzl0+1|
+ |T (sl0+2 − sl0+1)zl0+1 − T (sl0+2 − tnk )xn

k |
+ (sl0+2 − sl0+1)(|Bzl0+1 −Bxn

k |+ |Bxn
k |)

≤ 2(sl0+2 − sl0+1)εn + |zl0+1 − T (sl0+1 − tnk )xn
k |

+ (sl0+2 − sl0+1)(M + εn/4)
< (sl0+1 − tnk )(M + 1) + (sl0+2 − sl0+1)(M + 9/4εn)

and since 0 < εn ≤ ε0 < 1/3, it is seen that

|zl0+2 − T (sl0+2 − tnk )xn
k | < (sl0+2 − sl0)(M + 1),

so we are again in position to apply Lemma 4.3. The case of a next uncommon
point sl0+3 ∈ (tnk , tnk+1) may be treated in the same way. We have therefore
shown that we are also in position to apply Lemma 4.3 and construct the
elements zl+1 and ẑl+1 even if the corresponding time-discretizing point sl is
not a common point for Pn and Pm. Hence if sl is an uncommon point in
(tnk , tnk+1) we may apply Lemma 4.3 and find zl+1 and ẑl+1 ∈ D satisfying

|zl+1 − T (sl+1 − sl)zl − (sl+1 − sl)Bzl| < 2(sl+1 − sl)εn(4.13)
|ẑl+1 − T (sl+1 − sl)xm

l − (sl+1 − sl)Bxm
l | < 2(sl+1 − sl)εm,(4.14)

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1 − sl; |zl − xm
l |).(4.15)

As a conclusion, we are able to construct (zl)
j+1
l=1 and (ẑl)

j+1
l=1 satisfying

either (4.10) to (4.12), if sl is a common point for Pm and Pn, or (4.13) to
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(4.15), if sl is not a common point for Pm and Pn. With those sequences
(zl)

j+1
l=1 and (ẑl)

j+1
l=1 at hand, we now estimate |um(t)− un(t)|. One sees that

(4.16) |um(t)− un(t)| ≤ |um(t)− ẑj+1|+ |ẑj+1 − zj+1|+ |zj+1 − un(t)|.
Also, from (4.11) or (4.14), we see that

|um(t)− ẑj+1| = |ẑj+1 − T (t− tmj )xm
j − (t− tmj )Bxm

j | ≤ 2(t− tmj )εm,

so we have obtained an estimation for the first term in the right-hand side of
(4.16). If tmj is a common point for Pm and Pn, one also obtains as above,
this time from (4.10), that |un(t)−zj+1| ≤ 2(t− tnj )εn. Suppose now that tmj
is not a common point for Pm and Pn, that is, sj ∈ (tni , tni+1). Then tni = sj0

for some j0 < j. It is easily seen that

|zj+1 − T (sj+1 − tni )xn
i − (sj+1 − tni )Bxn

i |

≤
j∑

l=j0

|zl+1 − T (sl+1 − sl)zl − (sl+1 − sl)Bzl|

+
j∑

l=j0

(sl+1 − sl)|Bzl −Bxn
i |

+
j∑

l=j0

(sl+1 − sl)|T (sj+1 − sl+1)Bxn
i −Bxn

i |

≤ 2
j∑

l=j0

(sl+1 − sl)εn + 2
j∑

l=j0

(sl+1 − sl)(εn/4)

≤ 3εn(sj+1 − tni ).

(4.17)

Hence we may use the following estimation for the third term in the right-
hand side of (4.16)

|zj+1 − un(t)| ≤ 3(sj+1 − tni )εn

whether or not tmj is a common point of Pn and Pm. It now remains to
estimate |zj+1 − ẑj+1|, and in order to do this we shall employ an recurrent
argument.

We first indicate a general estimate which is to be used during our argu-
ment. It is easy to see that if [tnk , tnk+1] = [sl0 , sl1 ] for some k, l0, l1, then, in
the same way as in the derivation of (4.17), one obtains

|zl1 − xn
k+1| ≤|zl1 − T (sl1 − tnk )xn

k − (sl1 − tnk )Bxn
k |

+ |xn
k+1 − T (sl1 − tnk )xn

k − (sl1 − tnk )Bxn
k |

≤4(tnk+1 − tnk )εn.

(4.18)

Note that, in this estimate, the interval [tnk , tnk+1], which corresponds to Pn,
may or may not contain uncommon points for Pn and Pm, but the estimation
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does not change, and also that k, l0, l1 are not fixed here. Let 0 ≤ l ≤ j + 1.
From (4.10) or (4.13), and from the construction of the discrete scheme, one
sees that

|ẑl − xm
l | ≤ |ẑl − T (sl − sl−1)xm

l−1 − (sl − sl−1)Bxm
l−1|

+ |xm
l − T (sl − sl−1)xm

l−1 − (sl − sl−1)Bxm
l−1|

≤ 3(sl − sl−1)εm,

(4.19)

whether or not sl is a common point for Pm and Pn. If sl is a common point
for Pm and Pn, we see from (4.12), (4.19), (4.18) and Lemma 3.3 that

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1 − sl, |xn
k − zl|+ |zl − ẑl|+ |zl − x̂m

l |)
≤ m2R+1

2εm+εn
(sl+1 − sl; |zl − ẑl|+ 3(sl − sl−1)εm + 4(tnk − tnk−1)εn).

If sl is not a common point for Pm and Pn, we see from (4.15), (4.19) and
Lemma 3.3 that

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1 − sl; |zl − ẑl|+ |ẑl − xm
l |)

≤ m2R+1
2εm+εn

(sl+1 − sl; |zl − ẑl|+ 3(sl − sl−1)εm).

Since |z1 − ẑ1| ≤ m2R+1
2εm+εn

(s1; 0) and also, from Lemmas 3.2 and 3.3,

m2R+1
2εm+εn

(t;m2R+1
2εm+εn

(s;α + α1) + α2) ≤ m2R+1
2εm+εn

(t + s;α + α1 + α2)

for any t, s, α, α1, α2 ≥ 0, we see by an easy induction argument that

|zj+1 − ẑj+1| ≤ m2R+1
2εm+εn

(sj+1; 4εntni+1 + 3εmtmj+1).

Summarizing, if t ∈ [tni , tni+1) ∩ [tmj , tmj+1), then

|um(t)− un(t)| ≤ 2(t− tmj )εm + 3(tmj+1 − tni )εn

+ m2R+1
2εm+εn

(tmj+1; 4εntni+1 + 3εmtmj+1),

and a similar estimate may be obtained for t = τ . The use of Lemma 3.4
yields that (un(t))n≥1 is uniformly convergent on [0, τ ] to a function u. Since
d(un(t), D) ≤ εn for t ∈ [0, τ ], it follows that u(t) ∈ D for t ∈ [0, τ ]. The fact
that u is a mild solution to (SP), its continuity and the semigroupal property
are easily obtained as in the proof of Theorem 6.1 in Georgescu and Oharu
[2], and our local existence theorem is proved.

Using Proposition 4.3, one obtains that there exists a nonlinear semigroup
S = {S(t); t ≥ 0} on D such that for each x ∈ D, u(t) = S(t)x is a global
mild solution to (SP).

It now remains to prove (I.b). Let now x, y ∈ D and denote u(t) = S(t)x,
v(t) = S(t)y. As done in the proof of Proposition 4.2, it is easily seen that

D+(|u(t)− v(t)|) ≤ w(|u(t)− v(t)|),
and the desired inequality follows from Lemma 3.2 (ii).



Generation and Characterization of Nonlinear Semigroups 727

5 A concrete example

In this section we make an attempt to describe the application of our abstract
generation results to the study of a concrete semilinear model. Our purpose
is to treat the initial value problem formulated as follows:

(IVP)

{
ut(t, x) = ∆xu(t, x) + g(u(t, x)), t > 0, x ∈ RN , u(t, x) ≥ 0;

u(0, x) = u0(x) x ∈ RN , u0(x) ≥ 0,

where g : R→ R is a continuous function such that g(0) = 0 and

(QLE) |g(t)− g(s)| ≤ w(|t− s|) for all t, s ∈ R,

w being an increasing uniqueness function.
Let us denote

X = C0(RN ) = {u ∈ C(RN ); u(x) → 0 as |x| → ∞},
C∞0 (RN ) = {u ∈ C∞(RN ); u(x) → 0 as |x| → ∞},
C∞c (RN ) = {u ∈ C∞(RN ); suppu is compact}.

For u ∈ C0(RN ), denote also

‖u‖ = sup
x∈RN

|u(x)|, m(u) = inf
x∈RN

u(x), M(u) = sup
x∈RN

u(x).

We attempt to establish the existence of positive mild solutions for the initial
value problem (IVP) in (X, ‖ · ‖). To this goal, let us define the operator
A1 : D(A1) ⊂ C∞0 (RN ) → C∞0 (RN ) by

D(A1) = {u ∈ C∞0 (RN );∆u ∈ C∞0 (RN )}, A1u = ∆u

and denote by A the closure of A1 in X. Let us also denote

D = {u ∈ X; u(x) ≥ 0 for all x ∈ RN}

and define the operator B : D → X by

(Bu)(x) = g(u(x)) for all u ∈ X and x ∈ RN .

In order to apply our abstract generation result, Theorem 2.1, we first show
that A is m-dissipative and D(A) = {u ∈ C0(RN ); ∆u ∈ C0(RN )}, that is,
A is the part of ∆ in C0(RN ). To this purpose, we prepare the following
intermediary estimation.

Lemma 5.1. For each λ > 0 and each u ∈ R(I − λA1), one has

m(u) ≤ [(I − λA1)−1u](x) ≤ M(u) for all x ∈ RN .
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Proof. Fix λ > 0 and u ∈ R(I − λA1). Let v ∈ C∞0 (RN ) such that v −
λA1v = u. Then u ∈ C∞0 (RN ) and hence lim|x|→∞ u(x) = 0, which implies
that m(u) ≤ 0 and M(u) ≥ 0. Let ε > 0 be arbitrary, but fixed, and set
Mε = M(u)+ε, mε = m(u)−ε. It is seen that v−λ∆v < Mε for all x ∈ RN

and hence (v −Mε)− λ∆(v −Mε) < 0 for all x ∈ RN . Multiplying the last
inequality by (v−Mε)+, integrating over RN and noting that supp(v−Mε)+

is compact, it is seen that
∫

RN

|(v −Mε)+|2dx + λ

∫

RN

|∇(v −Mε)+|2dx ≤ 0,

from which we infer that v(x) ≤ Mε for all x ∈ RN . Similarly, mε ≤ v(x) for
all x ∈ RN . Since ε > 0 was arbitrary, we obtain the desired inequality.

Lemma 5.2. For each λ > 0 and each u ∈ R(I − λA), one has

m(u) ≤ [(I − λA)−1u](x) ≤ M(u) for all x ∈ RN .

Proof. Fix λ > 0 and u ∈ R(I − λA). Let v ∈ D(A) such that v − λAv = u.
Then [v, (u − v)/λ] ∈ A and, from the definition of the operator A, there
exists ([vn, wn])n≥1 ⊂ A1 such that vn → v and wn → (u− v)/λ as n →∞.
Let un = vn + λwn. It is easy to see that un → u and also, from Lemma
5.1, m(un) ≤ vn(x) ≤ M(un) for all x ∈ RN . Passing to limit as n → ∞,
it is seen that m(u) ≤ v(x) ≤ M(u) for all x ∈ RN , that is, the desired
inequality.

From the above lemma we infer that ‖(I − λA)−1u‖ ≤ ‖u‖ and hence A
is dissipative. Let us define A2 : D(A2) ⊂ C0(RN ) → C0(RN ) by

D(A2) = {u ∈ C0(RN );∆u ∈ C0(RN )}, A2u = ∆u,

that is, A2 is the part of ∆ in C0(RN ). We now attempt to show that A ≡ A2.
First, let us show that A2 is closed. To this goal, let ([un, vn])n≥1 ⊂

A2 such that [un, vn] → [u, v] in C0(RN ) × C0(RN ) as n → ∞. Since
([un, vn])n≥1 ⊂ A2, by a limiting argument it is seen that [u, v] ∈ A, and
it can be inferred from our previous considerations that [u, v] ∈ A2, which
implies that A2 is closed.

It is easy to see that A1 ⊂ A2 and passing to closures in C0(RN ) we may
infer that A ⊂ A2. It now remains to show that A2 ⊂ A. Let [u, v] ∈ A2. By
the definition of A2, u, v ∈ C0(RN ) and −∆u = v. Set

ρ(x) =

{
e

1
|x|2−1 if |x| < 1;

0 if |x| > 1,
ρn(x) = nNρ(nx)

/∫

RN

ρ(x)dx.

Define un = ρn ∗ u and vn = ρn ∗ v. Since ρn ∈ C∞c (RN ) and u, v ∈ C0(RN ),
it is seen that the regularized functions un and vn belong to C∞(RN ). Also,
un → u and vn → v uniformly on compact subsets of RN . Let ε > 0. Since
u ∈ C0(RN ), there is R > 0 such that |u(x)| < ε for all |x| > R. Then
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|un(x)| < ε for each n ≥ 1 and x ∈ RN with |x| > R + 1, so un ∈ C0(RN )
and similarly vn ∈ C0(RN ). Since ∆un = ∆u ∗ ρn = vn, it is seen that
[un, vn] ∈ A1 for each n ≥ 1, which implies that [u, v] ∈ A. Consequently, we
also have A2 ⊂ A, which implies that A2 ≡ A.

We next show that R(I−A) = C0(RN ), i.e. A is m-dissipative. First, let
us prove that R(I −A) ⊃ C∞c (RN ).

Lemma 5.3. For each v ∈ C∞c (RN ) there is u ∈ D(A) such that u−Au = v.

Proof. Fix v ∈ C∞c (RN ) and p > N . Then there is u ∈ W 1,p(RN ) such
that u − ∆u = v. Since v ∈ C∞c (RN ), by the regularity theorem it is seen
that u ∈ Wm,p(RN ) for all m ≥ 1. From Morrey’s embedding theorem,
W 1,p(RN ) ⊂ L∞(RN ) and so lim|x|→∞ w(x) = 0 for all w ∈ W 1,p(RN ).
Combining the above, it is seen that u ∈ C∞0 (RN ), hence u ∈ D(A) and
u − Au = v. Moreover, from Lemma 5.2, one has that −‖v‖ ≤ u(x) ≤ ‖v‖
for all x ∈ RN .

Fix now v ∈ C0(RN ). Then there are (un)n≥1 ⊂ C∞c (RN ) and (vn)n≥1 ⊂
C∞c (RN ) such that un − ∆un = vn for all n ≥ 1 and vn → v as n → ∞.
By the previous argument, ‖un − um‖ ≤ ‖vn − vm‖ for all m,n ≥ 1, which
implies the existence of u ∈ C0(RN ) such that un → u as n → ∞. Since
[un, un − vn] ∈ A1, passing to limit as n → ∞ it is seen that [u, u − v] ∈ A.
Therefore R(I −A) = C0(RN ) and A is m-dissipative.

It is easy to see that B is continuous on D. Since w is increasing, using
(QLE) one sees that

|(Bu)(x)− (Bv)(x)| = |g(u(x))− g(v(x))| ≤ w(‖u− v‖) for all x ∈ RN

and so ‖Bu−Bv‖ ≤ w(‖u− v‖) for all u, v ∈ D. From Proposition 4.1, it is
seen that the semilinear stability condition (II.b) is satisfied.

We now prove that the subtangential condition (II.a) holds. Since

m(u) ≤ [(I − λA)−1u](x) ≤ M(u) for all λ > 0, u ∈ X and x ∈ RN ,

it is seen that (I−λA)−1(D) ⊂ D for all λ > 0 and so, using the exponential
formula, T (t)D ⊂ D for all t ≥ 0.

Fix now u ∈ D and ε > 0. Since g is continuous and g(0) = 0, there is
δ > 0 such that |t| ≤ δ implies |g(t)| ≤ ε. Also, since u ∈ C0(RN ), there is
η > 0 such that

inf
x∈RN

g(u(x)) + δ/(2h) ≥ 0 for all h ∈ (0, η).

Fix x ∈ RN . If |u(x)| ≤ δ, then

(1/h)[(T (h)u)(x) + hg(u(x))] ≥ g(u(x)) ≥ −ε.

If |u(x)| > δ, then

(1/h)[(T (h)u)(x) + hg(u(x))]
= (1/h)[(T (h)u)(x)− u(x)] + (1/h)[u(x) + g(u(x))]
≥ (δ − δ/2)/h + g(u(x)) ≥ 0.
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Therefore
(1/h)d(T (h)u + hBu,D) ≤ ε for all h ∈ (0, η)

and so the subtangential condition (II.a) is satisfied. With these prelimi-
naries, our initial value problem (IVP) can be reformulated as a semilinear
initial value problem in X, of the form

(SP)

{
U ′(t) = (A + B)U(t), t > 0;
U(0) = x ∈ D,

where U(t) = u(t, ·), and it is seen from our previous considerations that
hypotheses (A), (B) and conditions (II.a), (II.b) are satisfied. We can now
apply our abstract generation result, Theorem 2.1, and conclude that there
exists a semigroup T = {T (t); t ≥ 0} which provides positive mild solutions
for the initial value problem (IVP) for any positive initial data u0 ∈ C0(RN ).
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