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Abstract. A single species model which is subject to periodic impulsive 

perturbations is investigated from the viewpoint of finding sufficient conditions 

for permanence, for the existence of periodic solutions, and for their global 

asymptotic stability. First, an auxiliary equation, whose solutions are continuous 

functions but which incorporates the effects of impulsive perturbations, is 

constructed, the relationship between its solutions and the solutions of the initial 

system being investigated. The permanence of the system is then established via 

a comparison argument, while the existence and global asymptotic stability of 

periodic solutions makes use, in addition to comparison estimations, of 

Brouwer's fixed point theorem. 
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1. Introduction 

A rather simple, yet useful, framework to investigate the behaviour of a 
single species model which is subject to adverse outside influence or of self-
inhibition is represented by the following autonomous ordinary differential 
equation 

 

))(())(()()( txhtxftxtx −=′  (1) 
 

In the above, )(tx  denotes the density of species x  at time t , )(xff =  

represents its per capita growth rate in the absence of external factors and 
)(xhh =  represents the cumulative effects of the outside influence, often 

materialized in the form of predation from another species, stocking, harvesting 
or self-inhibition. 

Concrete choices for f and h  are numerous and well motivated by the 

particulars of the species to be considered. Perhaps the most popular choice of 
f  is given by bxaxf −=)( , 0, >ba , giving rise to a logistic growth model. 

As far as h  is assumed to model the effects of predation (and in another similar 
circumstances, such as modelling the effects of intraspecies competition), it can 
also be expressed as )()( xxxh ϕ= , where ϕ  is the per capita death rate of 

species x  due to predation. 
A particular case of (1), namely the equation 
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has been proposed by Ludwig et al. (1978) and Murray (2002) to model the 
outbreak of a spruce budworm population. In (2), a  is the linear birth rate of 

the budworm and 
b

a
 is the carrying capacity of the environment, related to the 

foliage available on trees. The term 
)(

)(
2

2
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+β

α
 represents the decrease in the 

budworm population due to predation, mainly by birds. 
Another particular case of (1), namely the equation 
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has been used in Tan et al. (2012) to derive their model of a single species 
dynamics in a periodically varying environment, the coefficients a, b, c and d 
being assumed to be continuous and periodic functions rather than constants. 
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Most populations experience environmental or biological fluctuations, 
some with unpredictable, stochastic variation, but some changing in a regular, 
diurnal, seasonal or annual manner due to climatic factors such as temperature, 
sunlight or humidity. See Cushing, 1986 for further details. See also Nisbet and 
Gurney, 1976 for a discussion on the ecological and evolutionary consequences 
of environmental periodicity, the effects of periodic variation in the values of 
intrinsic growth rate and of the carrying capacity of a delayed logistic model 
upon system in a limit cycle or at a stable equilibrium being considered. 

Impulsive dynamical systems, characterized by the coexistence of 
continuous and discrete dynamics, are natural choices for the mathematical 
modelling of systems involving abrupt changes of state or sudden perturbations 
from external factors. In recent years, impulsive dynamical systems have found 
their applications in population dynamics (hunting or harvesting predator-prey 
models, Zhang et al., 2008), agriculture (integrated pest management, Zhang et 

al., 2007), medicine (vaccination strategies, Stone et al., 2000, immunotherapy, 
Bunimovich-Mendrazitsky et al., 2008), communication security (signal 
encryption, Khadra et al., 2003), mechanics (impact mechanical systems, 
Galyaev et al., 2006), to mention only a few fields. 
 Following the above considerations, we shall now discuss the dynamics 
of the model 
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the following assumptions being deemed to hold. 
(H1) …<<< 210 ττ  are the time instances at which the impulsive 

perturbations occur and +∞=
∞→

k
k

τlim . 

(H2) ( ) *Ν∈kkλ  is a sequence of real numbers such that 1−>kλ  for 

*
Ν∈k . 

(H3) There exist *
Ν∈q  and 0>T  such that kqk λλ =+  and 

Tkqk +=+ ττ  for all *
Ν∈k  

The functional coefficients R→∞),0[:a  and ),0(),0[: ∞→∞b  are 

continuous and T -periodic, while ),0[),0[),0[: ∞→∞×∞ϕ  is continuous, T -

periodic with respect to the first variable and has a continuous and bounded 
partial derivative with respect to the second variable. In this regard, let us denote 
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Assume also that 
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( ) ( 0), for all [0 ] and 0t ,x t,  t ,T    x ,≤ ∈ ≥ϕ ϕ  

that is, the per capita death rate of the species x  is higher at low densities. 
Impulsively perturbed models which are related to (4) have been 

investigated in Liu et al., 2010, in which a version of the eq. (2) is analyzed, 
a , b ,α , β  being replaced by continuous and periodic functions, the influence 

of proportional and of constant impulsive perturbations upon the permanence of 
the system being considered, in Tan et al. (2012), which studies the existence 
and global stability of periodic solutions for a particular case of (4) in which 

)()(

)(
))(,(

txtd

tc
txt

+
=ϕ  and in Liu et al. (2010), in which the influence of 

hereditary effects and of constant impulsive perturbations upon the permanence 
of a logistic model with delay-dependent predation is investigated. A related 
impulsively perturbed model with stage structure describing a strategy for 
controlling the apple snail in paddy fields has been analyzed in Zhang et al. 
(2007). See also Luca (2001, 2008). 

 
2. The Existence of Positive Periodic Solutions 

  
First of all, we shall reduce the initial system (4), whose solutions are 

subject to impulsive perturbations, to another equation whose solutions are not 
in themselves subject to impulsive perturbations, but whose coefficients are 
discontinuous. 

Let us consider the reduced equation 
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The following Lemmas, proved in Tan et al. (2012), provide the link 

between the solutions of the initial system (4) and those of the reduced eq. (5). 
At this point, it should be noted that, unlike those of the initial system (4), the 
solutions of the reduced eq. (5) are continuous functions, fact which simplifies 
several quantitative estimations provided that they are stated in terms of 
solutions of  (5) rather than in terms of solutions of (4). 
 

Lemma 1. (Tan et al., 2012). )()( tztλ  is a solution of the initial system 

(4) if and only if )(tz  is a solution of the reduced eq. (5). 
 

In this regard, since one needs to find a T -periodic solution for (4), it is 
natural to apply Brouwer's fixed point theorem to a T -mapping which 
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associates to a given initial data the value of the associated solution of (4) at 
time T . Since, by Lemma 1, the solutions )(tx  of (4) are of type )()( tztλ , 

where )(tz  is a solution of (5), one starts by establishing quantitative properties 

of the said products )()( tztλ . 
 

Lemma 2. (Tan et al., 2012). Let )(tz  be a solution of the reduced eq. 

(5). Then 
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are also solutions of the reduced eq. (5). 
 

Let us denote 

.)(min),(max),)(exp()(
0 ],0[],0[
∫

∈∈
=Λ=Λ=

T

Tt
L

Tt
U ttdttaTE λλλ  

 

Lemma 3. If 
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where 1z  is the solution of (5) with initial data 0
11 )0( zz = . 

 

Proof. Let 01 >ε  such that 
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Let 1z  be the solution of (5) with initial data 0
11 )0( zz = . Then, since 

)()()(1 tztatz ≤′ , it follows that 
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0
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Also, 
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which implies that 



102                                     Paul Georgescu and Hong Zhang 
 

 

( )
( )( ) ( )

( )( ).)0,())()(,(exp

)()()(exp)0,()(exp

))()(,()()()()(exp)(

0 1

0 10
0
1

0 11
0
11

∫

∫∫

∫

−−⋅

−−=

−−=

T

TT

T

dtttztt

dttzttbdtttaz

dttztttzttbtazTz

ϕλϕ

λϕ

λϕλ

 

We note that 
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Lemma 4. If 
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where 2z  is the solution of (5) with initial data 0
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Proof. Let us fix 








Λ

Λ
∈

U

L

U

L

b

b

TT

E 1
,

ln
2δ  and denote 

LLb
l

Λ
= 2

2
δ

. Note 

that, by this choice of 2δ , one has 
 

( )( ) ( ) 1.-exp)(exp 20 2 <=−∫ TEdttaλ(T)
T δδ  

Let us now find 0
2z  such that 

2
0
2

11

l
Tb

z
UU =Λ+ . Since 

),()()(

)()()()]0,()()[(

))()(,()()]()()()()[()(

2
2

2
22

22222

tzttb

tzttbttatz

tztttztzttbtatztz

λ

λϕ

λϕλ

−≥

−−≥

−−=′

 



                                      Bul. Inst. Polit. Iaşi, t. LX (LXIV), f. 2, 2014                                         103                       
 

 

it follows that 
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which implies that 
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This implies that 
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We are now ready to establish that conditions (6) and (7) employed in 
Lemmas 3 and 4 are actually sufficient conditions for the existence of periodic 
solutions of (4). 
 

Theorem 5. If conditions (6) and (7) are satisfied, then the system (4) 

has a positive T -periodic solution. 
 

Proof. Let 0
1z  and 0

2z  be as specified in Lemmas 3 and 4 and let 1z , 2z  

be the solutions of (5) with initial data 0
1z  and 0

2z , respectively. Let also 

],[ 0
2

0
10 zzz ∈  and let z  be the solution of (5) with initial data 0z . Then, by a 

comparison argument, it follows that 
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Using Lemmas 3 and 4, it follows that 
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By the above argument, L is well-defined, and by the continuous 
dependence of the solutions of (5) on the initial data, L  is continuous. Applying 
the scalar form of Brouwer's fixed point theorem, it follows that there is 
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0
* zzz ∈  such that 0

*
0
* zLz = , that is, 0

** )()( zTzT =λ , where *z  is the 

solution of (5) with initial data 0
*z . 

Up to now, we have employed the various properties of the solutions of 
the reduced eq. (5), although we actually have to find a periodic solution of the 
initial system (4). We return to investigating the solutions of the initial system 
(4) via the linking property indicated in Lemma 1, namely by defining the 
desired periodic solution of the initial system (4) through the formula 
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As previously mentioned, by Lemma 1, *x  is a solution of the initial 

system (4). It remains to show that *x  is T -periodic. 

By Lemma 2, 
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and by the uniqueness theorem, ],0[),()(~
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that is, *x  is T -periodic. This ends the proof of Theorem 5. 

 
3. The Permanence of the System 

In this section, we shall study the permanence of (4). To this purpose, 
we introduce the following definition. 
 

Definition 1. The system (4) is said to be permanent (uniformly 

persistent) if there are 0, >Mm  such that for each solution )(tx of (4) with 

positive initial data )0(x , one has Mtxm ≤≤ )( , for enough large t . 
 

From a biological viewpoint, if (4) is permanent, then the species x  
will, in the long term, neither face extinction nor extreme proliferation, its 
population size varying between bounds not depending on the initial conditions. 
Further information relating to the mathematical theory of persistence can be 
found in the comprehensive monograph of Smith and Thieme (2011). 

We shall now establish the permanence of (4). In this regard, the 
following Lemma, proved in Liu et al. (2009), establishes the existence and 
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global asymptotic stability of the periodic solution for the logistic equation with 
T -periodic coefficients. 

 

Lemma 6. (Liu et al., 2009). Consider the system 
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where the functional coefficients a  and b are continuous T -periodic functions, 

0>T , and 0)( >tb  for 0≥t . Assume also that ( ) *Ν∈kkτ  is a sequence of 

strictly positive numbers and ( ) *Ν∈kkλ  is a sequence of real numbers such that 

1−>kλ  for *
Ν∈k  for which there exist *

Ν∈q and 0>T  such that kqk λλ =+  

and Tkqk +=+ ττ  for all *
Ν∈k . If  
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then the system (8) has a unique positive T -periodic solution which is globally 

asymptotically stable.  
 

We are now ready to state and prove a sufficient condition for the 
permanence of (4). 
 

Theorem 7. The system (4) is permanent provided that condition (6) holds. 
  

Proof. Let x  be a solution of (4) which starts with strictly positive 
initial data )0(x . It is easy to see that 0)( >tx  for all 0≥t . We consider the 

following comparison systems 
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By Lemma 6, systems (9) and (10) have positive and globally 
asymptotically stable T -periodic solutions *1u  and *2u , respectively. Let now 

)(min *1],0[ tuTt∈<ε  and let 1
~u , 2

~u  be initial solutions of (9) and (10), 

respectively, with initial data )0(x . By a comparison argument, one obtains 

using also the global asymptotic stability of *1u  and *2u  that there is 1t  large 

enough such that, for all 1tt ≥ , 
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εε +≤≤≤<− )()(~)()(~)( *221*1 tututxtutu , 

and consequently, after denoting  

ε−= ∈ )(min *1],0[ tum Tt , ε+= ∈ )(min *2],0[ tuM Tt , 

it follows that 

,for  ,)( 1ttMtxm ≥≤≤  

which ends the proof of the permanence result. 
Note that the permanence condition (6) can be expressed in the form 

( ) 0)0,()()(ln
0

>−+ ∫ dtttaT
T ϕλ  (11) 

Let us briefly discuss the biological meaning of (11). Suppose that the 
species x  approaches extinction (that is, )(tx  approaches 0). Then, over a 

period, dtta
T

∫0 )(  approximates the total per capita growth of the species x , 

while dtt
T

∫0 )0,(ϕ approximates the total per capita population loss of this 

species and )(ln Tλ  is a correction term which accounts for the total effects of 

the impulsive controls. Consequently, the permanence condition (11) represents 
the fact that total normalized growth of species x  over a period exceeds the 
total normalized loss of this species in the same amount of time, the species x  
being then able to avoid extinction. 

 
4. The Global Stability of the Positive Periodic Solutions 

Having established sufficient conditions for the existence of the positive 
periodic solutions, we are now ready to discuss its global asymptotic stability. 

 

Theorem 8. Apart from the existence conditions (6) and (7), assume 

that there exists 0>µ  such that 

, and ],0[ allfor ),()( mxTtxt
x

tb ≥∈≥
∂
∂

+ µ
ϕ

 (12) 

where m  is a lower permanence constant for (4). Then (4) has a positive T -

periodic solution which is globally asymptotically stable. 
 

Proof. Let *x  be the positive T -periodic solution of (4), which exists 

by virtue of Theorem 5 and let x  be any other positive solution of (4). By 
Theorem 7, there are 0, >Mm  and 01 >t  such that 

,for  ,)(,)( 1* ttMtxmMtxm ≥≤≤≤≤  (13) 
Let us consider the functional ),0[),0[: ∞→∞V  defined by 

)(ln)(ln)( * txtxtV −= . Since, for *
Ν∈k , 
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it follows that V is continuous. One then has, for all 1tt ≥ , kt τ≠ , that 
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for some tξ  between )(tx and )(* tx , by the Mean Value Theorem. 

By (12), there is 0>µ  such that, for all 1tt ≥ , kt τ≠ , 
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By the Mean Value Theorem and (13), it follows that, for all 1tt ≥ , kt τ≠ , 
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which implies  that, for all 1tt ≥ , kt τ≠ , 
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Fix now *
Ν∈k  such that 1tk >τ . By (15), it follows that 
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which implies that 0)(lim =∞→ tVt . Using (14), this yields that 
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which ends the proof of Theorem 8. 
Note that the existence theorem, Theorem 2.1, the permanence result, 

Lemma 3.2 and the global stability result, Theorem 3.1 of Tan et al., 2012 can 
be obtained from our Theorems 5, 7 and 8, respectively by particularizing 

)()(
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=ϕ . Our results can also be applied for other specific forms 

forms of ϕ  such as 
)()()()(1

)(
))(,(

2 txttxtd
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txt

ω
ϕ

++
= , introduced by 

Andrews, 1968 to describe inhibition phenomena which occur in the 
decomposition of wastewater. Further possible developments include 
incorporating the effects of the delay which is necessary to reach maturity into 
the logistic growth term which appears in (4). 
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PERMANENłĂ, PERIODICITATE ŞI STABILITATE PENTRU UN MODEL 
PRIVIND DINAMICA UNEI SINGURE SPECII SUPUSE 

 LA PERTURBAłII DE TIP IMPULSIV 
 

(Rezumat) 
 

Un model care descrie dinamica unei specii supuse la perturbaŃii de tip 
impulsiv este investigat cu scopul de a determina condiŃii suficiente pentru permanenŃă, 
pentru existenŃa soluŃiilor periodice şi pentru stabilitatea globală a acestora. Mai întâi, 
este introdusă o ecuaŃie auxiliară, ale cărei soluŃii sunt funcŃii continue, dar care 
încorporează efectele perturbaŃiilor impulsive, fiind investigată relaŃia dintre soluŃiile 
acesteia şi soluŃiile ecuaŃiei iniŃiale. PermanenŃa sistemului este stabilită ulterior cu 
ajutorul unui argument de comparaŃie, în timp ce existenŃa şi stabilitatea globală a 
soluŃiilor periodice utilizează, pe lângă estimări de comparaŃie, şi teorema de punct fix a 
lui Brouwer.  

 


