FINDING THE TRACES OF A GIVEN PLANE: ANALYTICALLY AND THROUGH GRAPHICAL CONSTRUCTIONS

BY
PAUL GEORGESCU ${ }^{1}$ and GRAȚIELA HÎNCU ${ }^{2}$

Abstract

This paper determines explicitely the traces of a plane [P] given by three of its points, using two different approaches: by means of analytic geometry and descriptive geometry methods, respectively.

Key words: traces, planes, analytic geometry, descriptive geometry.

1. Introduction

The problem which is of concern in this paper is stated as follows:
Find the traces of the plane $[P]$ determined by the point $A(70,50,40)$ and the straight line $(B C)$, where $B(100,20,50)$ and $C(60,80,10)$.

In what follows, this problem will be solved first by using analytic geometry and then by methods of descriptive geometry, a comparison between these approaches being drawn as a conclusion.

2. Solving Methods

2.1. Analytical Geometry Method

Having in view that a line is completely determined by two of its points, we solve the general problem of determining the traces of a plane given by three points $A\left(x_{A}, y_{A}, z_{A}\right), B\left(x_{B}, y_{B}, z_{B}\right), C\left(x_{C}, y_{C}, z_{C}\right)$. Then, we particularize the results for the concrete problem stated above.

We start by determining the trace $\left(P_{h}\right)$ of the plane $[\mathrm{P}]$ on the plane $(x O y)$. First, let us denote:
(1)

$$
\begin{aligned}
& \Delta_{x}=\left|\begin{array}{lll}
y_{A} & z_{A} & 1 \\
y_{B} & z_{B} & 1 \\
y_{C} & z_{C} & 1
\end{array}\right|, \quad \Delta_{y}=\left|\begin{array}{lll}
z_{A} & x_{A} & 1 \\
z_{B} & x_{B} & 1 \\
z_{C} & x_{C} & 1
\end{array}\right|, \quad \Delta_{z}=\left|\begin{array}{lll}
x_{A} & y_{A} & 1 \\
x_{B} & y_{B} & 1 \\
x_{C} & y_{C} & 1
\end{array}\right|, \\
& \Delta=\left|\begin{array}{lll}
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B} \\
x_{C} & y_{C} & z_{C}
\end{array}\right| .
\end{aligned}
$$

Since the equation of $[\mathrm{P}]$ is:
(3)

$$
\left|\begin{array}{cccc}
x & y & z & 1 \\
x_{A} & y_{A} & z_{A} & 1 \\
x_{B} & y_{B} & z_{B} & 1 \\
x_{C} & y_{C} & z_{C} & 1
\end{array}\right|=0
$$

and all points in the plane $(x O y)$ have the z-coordinate equal to 0 , one obtains by expanding the determinant along the first row that:

$$
\left(P_{h}\right): x\left|\begin{array}{lll}
y_{A} & z_{A} & 1 \tag{4}\\
y_{B} & z_{B} & 1 \\
y_{C} & z_{C} & 1
\end{array}\right|-y\left|\begin{array}{lll}
x_{A} & z_{A} & 1 \\
x_{B} & z_{B} & 1 \\
x_{C} & z_{C} & 1
\end{array}\right|-\left|\begin{array}{ccc}
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B} \\
x_{C} & y_{C} & z_{C}
\end{array}\right|=0 ; \quad z=0
$$

that is,

$$
\left(P_{h}\right): x\left|\begin{array}{lll}
y_{A} & z_{A} & 1 \tag{5}\\
y_{B} & z_{B} & 1 \\
y_{C} & z_{C} & 1
\end{array}\right|+y\left|\begin{array}{ccc}
z_{A} & x_{A} & 1 \\
z_{B} & x_{B} & 1 \\
z_{C} & x_{C} & 1
\end{array}\right|=\left|\begin{array}{ccc}
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B} \\
x_{C} & y_{C} & z_{C}
\end{array}\right| ; \quad z=0
$$

Consequently, the trace $\left(P_{h}\right)$ of $[\mathrm{P}]$ on the plane $(x O y)$ is characterized by:

$$
\begin{equation*}
\left(P_{h}\right): x \Delta_{x}+y \Delta_{y}=\Delta ; \quad z=0 \tag{6}
\end{equation*}
$$

Through the circular permutation $x \rightarrow y \rightarrow z \rightarrow x \rightarrow y$, one obtains that the trace $\left(P_{l}\right)$ of $[\mathrm{P}]$ on the plane $(y O z)$ is given by:

$$
\begin{equation*}
\left(P_{l}\right): y \Delta_{y}+z \Delta_{z}=\Delta ; \quad x=0 \tag{7}
\end{equation*}
$$

and the trace $\left(P_{v}\right)$ of $[\mathrm{P}]$ on the plane $(x O z)$ is given by:

$$
\begin{equation*}
\left(P_{v}\right): z \Delta_{z}+x \Delta_{x}=\Delta ; \quad y=0 . \tag{8}
\end{equation*}
$$

Note that the traces $\left(P_{h}\right),\left(P_{l}\right)$ and $\left(P_{v}\right)$ can also be given in the following parametric forms:

$$
\begin{align*}
& \left(P_{h}\right): x=\frac{1}{2} \frac{\Delta}{\Delta_{x}}-\frac{\Delta}{\Delta_{x}} t ; \quad y=\frac{1}{2} \frac{\Delta}{\Delta_{y}}+\frac{\Delta}{\Delta_{y}} t ; \quad z=0, \quad t \in \mathbf{R}, \tag{9}\\
& \left(P_{v}\right): y=\frac{1}{2} \frac{\Delta}{\Delta_{y}}-\frac{\Delta}{\Delta_{y}} t ; \quad z=\frac{1}{2} \frac{\Delta}{\Delta_{z}}+\frac{\Delta}{\Delta_{z}} t ; \quad x=0, \quad t \in \mathbf{R}, \tag{10}\\
& \left(P_{l}\right): z=\frac{1}{2} \frac{\Delta}{\Delta_{z}}-\frac{\Delta}{\Delta_{z}} t ; \quad x=\frac{1}{2} \frac{\Delta}{\Delta_{x}}+\frac{\Delta}{\Delta_{x}} t ; \quad y=0, \quad t \in \mathbf{R} . \tag{11}
\end{align*}
$$

Then, we determine the intersections between $[\mathrm{P}]$ and the coordinate axes. Since the intersection between $[\mathrm{P}]$ and $(O x)$ is actually the intersection between its trace $\left(P_{h}\right)$ and $(O x)$ and this point has the y-coordinate equal to 0 , one obtains from Eq (6) that the intersection between $[\mathrm{P}]$ and $(O x)$ is the point P_{x} given by:

$$
\begin{equation*}
P_{x}=P_{x}\left(\frac{\Delta}{\Delta_{x}}, 0,0\right) . \tag{12}
\end{equation*}
$$

Through circular permutations, one obtains that the intersection between $[\mathrm{P}]$ and $(O y)$ is the point P_{y} given by:

$$
\begin{equation*}
P_{y}=P_{y}\left(0, \frac{\Delta}{\Delta_{y}}, 0\right) \tag{13}
\end{equation*}
$$

and the intersection between $[\mathrm{P}]$ and (Oz) is the point P_{z} given by:

$$
\begin{equation*}
P_{z}=P_{z}\left(0,0, \frac{\Delta}{\Delta_{z}}\right) \tag{14}
\end{equation*}
$$

We are now ready to solve the problem stated in the Introduction.

Solution

One sees that:

$$
\begin{gather*}
\Delta=\left|\begin{array}{lll}
x_{A} & y_{A} & z_{A} \\
x_{B} & y_{B} & z_{B} \\
x_{C} & y_{C} & z_{C}
\end{array}\right|=\left|\begin{array}{ccc}
70 & 50 & 40 \\
100 & 20 & 50 \\
60 & 80 & 10
\end{array}\right|=106000 \tag{15}\\
\Delta_{z}=\left|\begin{array}{lll}
x_{A} & y_{A} & 1 \\
x_{B} & y_{B} & 1 \\
x_{C} & y_{C} & 1
\end{array}\right|=\left|\begin{array}{ccc}
70 & 50 & 1 \\
100 & 20 & 1 \\
60 & 80 & 1
\end{array}\right|=600 \tag{16}\\
\Delta_{x}=\left|\begin{array}{lll}
y_{A} & z_{A} & 1 \\
y_{B} & z_{B} & 1 \\
y_{C} & z_{C} & 1
\end{array}\right|=\left|\begin{array}{ccc}
50 & 40 & 1 \\
20 & 50 & 1 \\
80 & 10 & 1
\end{array}\right|=600 \tag{17}\\
\Delta_{y}=\left|\begin{array}{lll}
z_{A} & x_{A} & 1 \\
z_{B} & x_{B} & 1 \\
z_{C} & x_{C} & 1
\end{array}\right|=\left|\begin{array}{ccc}
40 & 70 & 1 \\
50 & 100 & 1 \\
10 & 60 & 1
\end{array}\right|=800 \tag{18}
\end{gather*}
$$

From Eqs (12)-(14), it follows that the intersections of $[\mathrm{P}]$ with the coordinate axes are: $P_{x}\left(\frac{530}{3}, 0,0\right), P_{y}\left(0, \frac{265}{2}, 0\right)$ and $P_{z}\left(0,0, \frac{530}{3}\right)$. From Eqs (5)-(7), it also follows that the trace $\left(P_{h}\right)$ is $3 x+4 y=530 ; z=0$, the trace $\left(P_{v}\right)$ is $3 x+3 z=530 ; y=0$ and the trace $\left(P_{l}\right)$ is $4 y+3 z=530 ; x=0$. Alternatively, form Eqs (9)-11, the parametric equations of the traces are:

$$
\begin{equation*}
\left(P_{h}\right): x=\frac{530}{6}(1-2 t) ; \quad y=\frac{265}{4}(1+2 t) ; \quad z=0, \quad t \in \mathbf{R}, \tag{18}
\end{equation*}
$$

$$
\begin{array}{ll}
\left(P_{v}\right): y=\frac{265}{4}(1-2 t) ; \quad z=\frac{530}{6}(1+2 t) ; \quad x=0, \quad t \in \mathbf{R}, \tag{19}\\
\left(P_{l}\right): z=\frac{530}{6}(1-2 t) ; \quad x=\frac{530}{6}(1+2 t) ; \quad y=0, \quad t \in \mathbf{R} .
\end{array}
$$

2.2. Descriptive Geometry Method

Fig. 1 - Traces of [P] plane
We determine the traces h and v^{\prime} of the straight line $(B C)$ and then we construct through the point A a line $\left(D_{l}\right)$ which is parallel to the given one (Fig. 1). To determine the traces of the plane, we need only one of the traces of the line $\left(D_{l}\right)$ (for example, the horizontal trace h_{1}). First of all, we represent the horizontal trace $\left(P_{h}\right)$ of $[\mathrm{P}]$ and then the vertical one, $\left(P_{v}\right)$. We note that $P_{x}=P_{z}=176$.(6) and $P_{y}=132.50$, which are the values obtained by using the analytical method.

3. Conclusions

As we can see, Descriptive Geometry offers a quick and elegant solution to the problem, while the analytical approach, although more computational, offers general formulas which can be applied to a large class of related problems.

22.01.2011
${ }^{1}$ Gheorghe Asachi Technical University, Department of Mathematics Iaşi, Romania,
e-mail: v.p.georgescu@gmail.com
${ }^{2}$ Gheorghe Asachi Technical University
Department of Descriptive Geometry and Technical Drawing Iaşi, Romania,
e-mail: hgratiela $@ y$ yahoo.com

REFERENCES

1. C ă r ă u ş u A., Vector algebra, analytic \& differential geometry. Ed. PIM, Iaşi, 2003.
2. * ** Mica Enciclopedie Matematică, Editura Tehnică, Bucureşti, 1985.

DETERMINAREA URMELOR UNUI PLAN FOLOSIND METODELE GEOMETRIEI ANALITICE ŞI ALE GEOMETRIEI DESCRIPTIVE

(Rezumat)
Lucrarea îşi propune să prezinte modalităţi diferite de determinare a urmelor unui plan dat prin trei puncte necoliniare, abordând metodele geometriei analitice şi aplicând principiile geometriei descriptive. Deşi ambele metode ajung la acelaşi rezultat privind determinarea urmelor planului [P], geometria descriptivă este mai rapidă şi mai intuitivă decât geometria analitică, care necesită calcule laborioase, dar are o aplicabilitate extinsă. Sperăm că demersul nostru va fi util, interesant şi edificator pentru studenții facultăților tehnice, dar şi celor interesați de cele două discipline de studiu.

