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In this paper, we propose two impulsive differential systems concerning biological and,
respectively, integrated pest management strategies. In each case, it is observed that
there exists a globally asymptotically stable susceptible pest-eradication periodic solu-
tion on condition that the amount of infective pests released periodically is larger than
a certain critical value. When the amount of infective pests released is less than this
critical value, the system is shown to be permanent, which implies that the trivial sus-
ceptible pest-eradication solution loses its stability. Further, the existence of a non-trivial
periodic solution is also studied by means of numerical simulations. In the case in which
a single control is used, one can only use the amount of infective pests which are peri-
odically released in order to control pests at desirable low levels, while in the case in
which integrated management is used, one can use the proportion of pests removed by
means of spraying chemical pesticides together with the amount of infective pests which
are periodically released to control pests at desirable low levels.

Keywords: Impulsive Control; Chemical Pesticides; Epidemics; Susceptible Pests;
Infective Pests.

1. Introduction

The history of pest control probably began with our primitive ancestors who ever
swatted a mosquito or picked off a louse. From the fossil record, we know that all
major taxa of biting flies and external parasites already existed by the time Homo
sapiens first appeared on Earth. Phthirus and Pediculus, the two genera of lice
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that feed on humans, have a host range that is limited to primates (apes and mon-
keys). Pest control strategies were mentioned occasionally in writings of the ancient
Chinese, Sumerian, and Egyptian scholars. Many of these tactics were embedded in
religion or superstition, but a few had real scientific merit. Predatory ants, for exam-
ple, were used in China as early as 1200 BC to protect citrus groves from caterpillars
and wood boring beetles. A passage in Homer’s Iliad (eighth century BC) describes
the use of fire to drive locusts into the sea, and the ancient Egyptians organized
long lines of human drovers to repel swarms of invading locusts. Nowadays, we can
choose from many different methods as we plan our strategy for controlling pests.
Sometimes a non-chemical method of control is as effective and convenient as a
chemical alternative. For many pests, total elimination is almost impossible, but
it is still possible to keep pests at acceptably low levels. In this regard, knowing
the options is the key to pest control. Methods available include pest prevention,
non-chemical pest controls, and chemical pesticides. The most effective strategy for
pest control may consist in combining the above methods in an approach known
as integrated pest management (IPM) that emphasizes reducing pests to tolera-
ble levels, with little cost to the grower and minimal possible hazard to people,
property, and environment. The concept of integrated pest management (IPM) was
introduced in the late 1950s and was widely practised during the 1970s and 1980s.1

Non-chemical pest control methods really work, and they have many advantages.
Compared to chemical treatments, non-chemical methods are generally effective for
longer periods of time. They are also less likely to create pest populations that
develop the ability to resist pesticides and many non-chemical pest controls can be
used with fewer safeguards, because they are generally thought to pose virtually
no hazard to human health or the environment. An example of non-chemical pest
control methods is biological treatment. Biological control is, generally, man’s use of
a suitably chosen living organism in order to control a particular pest. This chosen
organism might be a predator, parasite, virus or bacterium that either kills the
harmful pest or interferes with its biological processes.2–8

For example, the scientific approach to biological control began with the dra-
matic and successful control of the cottony-cushion scale, Icerya purchasi (Mask).,
by the introduction of the vedalis beetle (ladybird), Rodolia cardinalis (Muls.), into
California in 1888.9 Another example is the control of the Asian Tiger Mosquito
(Aedes albopictus), which can transmit viruses, especially dengue fever virus, Ross
River fever virus, Barmah Forest virus and Japanese encephalitis virus. To control
the spread of the Asian Tiger Mosquito, we could spray with Bti, which is a variety
of the bacterium Bacillus thuringiensis (BT), which occurs naturally and is com-
monly found in soils worldwide. BT was first discovered infecting silkworms over
90 years ago in Japan, where it became known as Sotto disease. A commercial BT
product was first registered in the United States in 1958; by 1960 it was cleared
for use on food crops and in 1961 it was registered for use in Canada. It is now the
most widely used naturally occurring pest control product in the world.

Note that insect pathogens are used in two ways. In the first method, a small
amount of pathogen is introduced into a pest population with the expectation that
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it will generate an epidemic which will subsequently remain endemic. In the second
method, an insect pathogen is used like biopesticides. In this case, the pathogen is
applied whenever the pest population reaches an economically significant level and
there is no expectation that the pathogen will survive for an appreciable amount
of time.

Another important method for pest control is chemical control. Since the late
1800s, entomologists and chemists have made outstanding progress in the tech-
nology of pest control. A chemical pesticide is defined as a synthetic substance,
used for protecting plants, wood or other plant products from harmful organisms,
for killing harmful organisms or for controlling the effects of harmful organisms.
This definition includes fungicides, insecticides, herbicides and rodenticides. Chem-
ical pesticides kill the pest directly, usually by exposing it to lethal substances or
unsuitable environmental conditions, reduce the reproductive potential of a pest
population, often by modifying its environment (biotic or abiotic) or by restricting
its movement, and modify the behavior of the pest to make it less troublesome
(attract, repel, confuse, exclude or mislead it). Farmers can use relatively simple
techniques to monitor the increase in insect pest numbers. Combining with an
understanding of their life cycles, farmers spray the correct amount of pesticides at
the effective time in order to maintain pest population at tolerable level.

To the best of our knowledge, there is a vast amount of literature on the applica-
tions of entomopathogens or chemical pesticides to suppress pests (see Refs. 10 to 17
and bibliographies cited therein). However, there are only a few papers and books on
mathematical models of the dynamics of microbial diseases and chemical synthetic
substances in pest control.18–20 How many infective pests do we release (we are
interested in the situation when environmental conditions do not allow a significant
epidemic to be generated if only a small amount of pathogen is introduced into a
pest population)? What proportion do we need to kill the pests by spraying chemical
pesticides? How do we evaluate the maximum amount (or the maximum period)
of an impulsive effect according to the parameters of the system? These are the
questions to be answered in order to ensure the success of our pest control strategy.

The main purpose of this paper is to construct two realistic models of systems
of impulsive control strategy for pest management, and investigate their dynam-
ics. In this regard, equations with impulsive effects describing evolution processes
are characterized by the fact that at certain moments of time they abruptly expe-
rience a change of state. Processes of such character are studied in almost every
domain of applied science. Numerous examples are given in certain books.21,22

Impulsive systems have been recently introduced into population dynamics in rela-
tion to impulsive vaccination,23,24 population ecology,25–29 chemostat model,30 the
chemotherapeutic treatment of disease,31 impulsive birth,32 and boundary value
problems.33

In Sec. 2, we introduce our above-mentioned realistic models. In Sec. 3, we
give some notations and lemmas. In Sec. 4, by using Floquet’s theorem, small-
amplitude perturbation methods and comparison techniques, we consider the local
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stability and global asymptotic stability of the so-called susceptible pest-eradication
periodic solution corresponding to each model. Next, we prove that each system is
permanent. In the last section, numerical simulations are used to show the existence
of positive periodic endemic solutions and of other rich dynamics of our models. A
brief discussion of the results is also given.

2. Model Formulation

In Goh19 the following two models were proposed:{
Ṡ = −rSI,

İ = rSI − wI
(2.1)

and {
Ṡ = −rSI,

İ = rSI − wI + u,
(2.2)

where S(t) denote the number of susceptible pests and I(t) denote the number of
infective pests. The parameter w is the death rate of the infective pest population,
and r is the infection rate. The control variable u(t) represent the release rate of
pests infected in a laboratory.
The following assumptions are made in order to formulate our mathematical models.

(A1): In the absence of the pathogen, the susceptible pest population S grows
according to a logistic fashion with carrying capacity K(> 0), and with an
intrinsic birth rate equal to 1. Infective pests do not reproduce neither in the
biological control model nor in the biological and chemical control model.
Also, in the biological and chemical control model below, the infective pest
population I contributes together with the susceptible pest population S

to population growth towards the carrying capacity of the environment.
However, population I does not contribute to population growth towards
the carrying capacity of the environment for the biological control model.

(A2): The transmission term has the form

βI(t)
1 + aSl(t)

,

where a and l(≤ 1) are positive constants.
(A3): In the biological control model, the action of releasing pests which are

infected by a pathogen in laboratories is impulsive and periodic. In the bio-
logical and chemical control model, pesticides are also sprayed in an impul-
sive and periodic fashion, with the same period T but at different moments
than those at which infective pests are released.

(A4): The infective pest population does not recover and cannot attack crops.

Note that for a = 0 one obtains Goh’s infection rate in (A2) and that our
model accounts for the effects of crowding, unlike Goh’s. Now following the above
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assumptions we develop the model (2.2) and write the following impulsive epidemic
models describing the evolution of susceptible and infective pests.

Ṡ(t) = S(t)
(
1 − S(t)

K

)− βI(t)S(t)
1+aSl(t)

,

İ(t) = βI(t)S(t)
1+aSl(t)

− wI(t),

}
t �= nT,

∆I(t) = µ, t = nT

(2.3)

and

Ṡ(t) = S(t)
(
1 − S(t)+I(t)

K

)− βI(t)S(t)
1+aSl(t)

,

İ(t) = βI(t)S(t)
1+aSl(t)

− wI(t),

}
t �= (n + l̃ − 1)T, t �= nT,

�S(t) = −p1S(t),
�I(t) = −p2I(t),

}
t = (n + l̃ − 1)T,

�S(t) = 0,

�I(t) = µ,

}
t = nT,

(2.4)

where 0 < l̃ < 1, �S(t) = S(t+)−S(t), and �I(t) = I(t+)− I(t). Also, 0 < p1 < 1
(0 < p2 < 1) represents the fraction of susceptible pests (respectively of infective
pests) which die due to pesticide spraying at t = (n + l̃ − 1)T . The quantity µ > 0
represents the release amount, at t = nT of infective pests which are bred in
laboratories in order to drive target susceptible pests to contracting the disease.
Also, n ∈ Z+ and Z+ = {1, 2, . . .}. T is the period of the impulsive effect, and the
biological meanings of other coefficients are the same as for the model (2.1). That
is, we can use a single biological control strategy or a combination of biological and
chemical methods to eradicate the susceptible pests or keep the susceptible pest
population below the damage level.

3. Preliminary

In this section, we will give some definitions, notations and some lemmas which will
be useful for our main results.

Let R+ = [0,∞), R2
+ = {x ∈ R2 : x > 0}. Denote f = (f1, f2)T the map defined

by the right hand side of the first two equations in system (2.3) and f = (f1, f2)T

the map defined by the right hand side of the first two equations in system (2.4).
Let V : R+ × R2

+ → R+. Then V is said to belong to class V0 if

(i) V is continuous in ((n−1)T, (n+L−1)T ]×R2
+ and ((n+L−1)T, nT ]×R2

+ and
for each x ∈ R2

+, n ∈ Z+, lim(t,y)→((n+L−1)T+,x) V (t, y) = V ((n + L− 1)T +, x)
and lim(t,y)→(nT+,x) V (t, y) = V (nT +, x) exist and are finite, where 0 < L ≤ 1.

(ii) V is locally Lipschitzian in x.

Definition 3.1. V ∈ V0. Then for (t, x) ∈ ((n − 1)T, (n + L − 1)T ] × R2
+ and

((n + L − 1)T, nT ] × R2
+(0 < L ≤ 1), the upper right derivative of V (t, x) with

respect to the impulsive differential system (2.3) (or (2.4)) is defined as

D+V (t, x) = lim
h→0+

sup
1
h

[V (t + h, x + hf(t, x)) − V (t, x)].
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The solution of system (2.3) (or (2.4)), denoted by x(t) = (S(t), I(t)) :
R+ → R2

+, is continuously differentiable on ((nT, (n + 1)T ] × R2) (or on
((n−1)T, (n+ l̃−1)T ]× R2

+ and ((n+ l̃−1)T, nT ]×R2
+, 0 < l̃ < 1). Obviously, the

global existence and uniqueness of solutions of system (2.3) (or (2.4)) is guaranteed
by the smoothness properties of f (or f) (see Lakshmikanthan et al.21 and Bainov
and Simeonov22 for details on fundamental properties of impulsive systems

)
. The

following Lemmas are obvious.

Lemma 3.1. Suppose x(t) is a solution of (2.3) (or (2.4)) with x(0+) ≥ 0. Then
x(t) ≥ 0 for t ≥ 0. Further, if x(0+) > 0, then x(t) > 0 for t ≥ 0.

Lemma 3.2. There exists a constant M > 0 such that S(t) ≤ M and I(t) ≤ M

for each solution x(t) of system (2.3) (or (2.4)) and t large enough.

Lemma 3.3. Let V : R+ × R2 → R+ and V ∈ V0. Assume that
D+V (t, X) ≤ g(t, V (t, X)), t �= (n + L− 1)T, t �= nT,

V (t, X(t+)) ≤ Ψ(1)
n (V (t, X(t))), t = (n + L− 1)T,

yV (t, X(t+)) ≤ Ψ(2)
n (V (t, X(t))), t = nT,

(3.1)

where g : R+ × R2
+ → R2

+ is continuous on ((n − 1)T, (n + L − 1)T ] and
((n + L − 1)T, nT ], 0 < L ≤ 1. Assume also that for each v ∈ R2

+ and n ∈ N,

lim
(t,v)→((n+L−1)T+,v)

g(t, v) = g((n + L − 1)T +, v)

and

lim
(t,y)→(nT+,v)

g(t, y) = g(nT +, v)

exist and are finite, where Ψ(i)
n (i = 1, 2) : R+ → R2

+ are quasi-monotone non-
decreasing.22 Let R(t, 0, U0) be the maximal solution of the scalar impulsive differ-
ential equation

U ′(t) = g(t, U), t �= (n + L − 1)T, t �= nT,

U(t+) = Ψ(1)
n (U(t)), t = (n + L − 1)T,

U(t+) = Ψ(2)
n (U(t)), t = nT,

U(0+) = U0.

(3.2)

defined on [0,∞). Then V (0+, X0) ≤ U0 implies that V (t, X(t)) ≤ R(t), t ≥ 0,

where X(t) = X(t, 0, X0) is any solution of (2.3) or (2.4) defined on [0,∞).

Proof. For t ∈ [0,LT ], we have by the classical comparison theorem V (t, X(t)) ≤
R(t). Hence, according to the facts that Ψ(1)

1 is quasi-monotone non-decreasing and
V (LT, X(LT )) ≤ R(LT ), we obtain

V (LT +, X(LT +)) ≤ Ψ(1)
1 (V (LT, X(LT ))) ≤ Ψ(1)

1 (R(LT )) = R(LT +).
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For t ∈ (LT, T ], it follows, using again the classical comparison theorem, that
V (t, X(t)) ≤ R(t). Since Ψ(2)

1 is quasi-monotone non-decreasing and V (T, X(T )) ≤
R(T ), we get

V (T +, X(T +)) ≤ Ψ(2)
1 (V (T, X(T ))) ≤ Ψ(2)

1 (R(T )) = R(T +).

Thus, for t ∈ [0, T ], it follows V (t, X(t)) ≤ R(t). Repeating this argument, we
finally arrive at the desired result. This completes the proof.

When all the directions of the inequalities in (3.1) are reversed, by using a
method similar to the one employed in the above similar method, it easily follows
from V (0+, X0) ≥ U0 that V (t, X(t)) ≥ R(t). Note that if we have some smoothness
conditions of g to guarantee the existence and uniqueness of solutions for (3.2), then
R(t) is exactly the unique solution of (3.2).

Next, we consider the following sub-systems of systems (2.3) and (2.4), respec-
tively: 

I ′(t) = −wI(t), t �= nT,

∆I(t) = µ, t = nT,

I(0+) = I0.

(3.3)

and 
I ′(t) = −wI, t �= (n + l̃ − 1)T, t �= nT,

�I(t) = −p2I(t), t = (n + l̃ − 1)T,

�I(t) = µ, t = nT,

I(0+) = I0.

(3.4)

Lemma 3.4. The system (3.3) has a positive periodic solution I∗1 (t) and for every
solution I(t) of (3.3), |I(t) − I∗1 (t)| → 0 as t → ∞, where

I∗1 (t) =
µe−w(t−nT )

1 − e−wT
, nT < t ≤ (n + 1)T

and

I∗1 (0+) =
µ

1 − e−wT
.

Lemma 3.5. The system (3.4) has a positive periodic solution I∗2 (t) and for every
solution I(t) of (3.4), |I(t) − I∗2 (t)| → 0 as t → ∞, where

I∗2 (t) =


µ exp(−w(t − (n − 1)T ))
1 − (1 − p2) exp(−wT )

, (n − 1)T < t ≤ (n + l̃ − 1)T,

µ(1 − p2) exp(−w(t − (n − 1)T ))
1 − (1 − p2) exp(−wT )

, (n + l̃ − 1)T < t ≤ nT,

I∗2 (0+) = I∗2 (nT +) =
µ

1 − (1 − p2) exp(−wT )
, I∗2 (l̃T +) =

µ(1 − p2) exp(−wl̃T )
1 − (1 − p2) exp(−wT )

.
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Proof. The proof is obvious. In fact, since the solution of (2.4) is

I(t) =



(1 − p2)n−1

(
I(0+) − µ

1 − (1 − p2)exp(−wT )

)
exp(−wt) + I∗2 (t),

(n − 1)T < t ≤ (n + l̃ − 1)T,

(1 − p2)n

(
I(0+) − µ

1 − (1 − p2)exp(−wT )

)
exp(−wt) + I∗2 (t),

(n + l̃ − 1)T < t ≤ nT,

the required convergence results immediately.

Therefore, systems (2.3) and (2.4), respectively, have the susceptible pest-
eradication periodic solution (0, I∗1 (t)) and (0, I∗2 (t)).

4. Extinction and Permanence

In this section, we first give sufficient conditions which assure the global asymp-
totic stability of the susceptible pest-eradication periodic solutions (0, I∗1 (t)) and
(0, I∗2 (t)) of the above-mentioned models (2.3) and (2.4), respectively.

Theorem 4.1. The susceptible pest-eradication periodic solution (0, I∗1 (t)) of (2.3)
is globally asymptotically stable provided that the inequality

µ >
wT

β
(4.1)

holds.

The proof of Theorem 4.1 is given in Appendix A.

Theorem 4.2. The susceptible pest-eradication periodic solution (0, I∗2 (t)) of (2.4)
is globally asymptotically stable provided that the inequality

µ >
w
(
T − ln 1

1−p1

)
(1 − (1 − p2)(exp(−wT )))(

1
K + β

)
(1 − p2 exp(−wl̃T ) − (1 − p2)(exp(−wT )))

(4.2)

holds.

The proof of Theorem 4.2 is given in Appendix B.
Secondly, we will focus on analyzing the permanence of systems (2.3) and (2.4).

Before stating our theorems, we give the following definition.

Definition 4.1. The system (2.3) (or (2.4)) is said to be permanent if there are
constants m, M > 0 (independent of initial value) and a finite time T0 such that for
all solutions S(t), I(t) with all initial values S(0+) > 0, I(0+) > 0, m ≤ S(t) ≤ M ,
m ≤ I(t) ≤ M hold for all t ≥ T0. Here, T0 may depend on the initial values S(0+)
and I(0+).
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Theorem 4.3. The system (2.3) is permanent provided

µ <
wT

β
(4.3)

holds.

The proof of Theorem 4.3 is given in Appendix C.

Theorem 4.4. The system (2.4) is permanent provided

µ <
w
(
T − ln 1

1−p1

)
(1 − (1 − p2)(exp(−wT )))

( 1
K + β)(1 − p2 exp(−wl̃T )− (1 − p2)(exp(−wT )))

(4.4)

holds.

The proof of Theorem 4.4 is given in Appendix D.

From the above, we note that ωT
β and

w(T−ln 1
1−p1

)(1−(1−p2)(exp(−wT )))

( 1
K +β)(1−p2 exp(−welT )−(1−p2)(exp(−wT )))

,

respectively, are threshold parameters for the stability of the systems (2.3)
and (2.4), as far as µ is concerned. Hence, we can evaluate the maximal period
of the impulsive controls according to the parameters of systems (2.3) and (2.4),
and the required percentage of pest removal by spraying chemical pesticides in
system (2.4).

5. Discussion and Numerical Analysis

In this paper, we have investigated two pest management strategies which rely
on impulsive and periodic controls. We showed that each system has a globally
asymptotically stable susceptible pest-eradication periodic solution. Moreover, we
gave sufficient conditions for the permanence of the systems and we pointed out
the thresholds for the stability of the systems (2.3) and (2.4).

If we choose the single biological control strategy, with the intention of stabi-
lizing the pest population at an acceptably low level, from Theorem 4.1, we have
shown that the susceptible pest-eradication periodic solution (0, I∗1 (t)) is globally
asymptotically stable if µ > µ̃max = ωT

β . In this section, we are ready to study
the influence of impulsive perturbation µ on the system (2.3) to suggest a highly
effective method of pest control.

We let K = 10, β = 1, a = 1, l = 0.8, w = 0.8, T = 1. From (4.1) and (4.3), we
derive that when µ > µ̃max = 0.8, the susceptible pest-eradication periodic solution
is globally asymptotically stable, while for µ < µ̃max = 0.8, the system (2.3) is
permanent.

Figure 1 shows the bifurcation diagrams of system (2.3) with µ varying from
0.001 to 1. When 0.8 < µ < 1, all target pests turn into infected pests (see Fig. 4).
When 0.53 < µ < 0.8, susceptible pests and infected pests ultimately co-exist in the
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Fig. 1. Bifurcation diagram of system (2.3) for K = 10, β = 1, a = 1, l = 0.8, w = 0.8, T = 1
and 0.001 ≤ µ ≤ 1.

Fig. 2. Bifurcation diagram of system (2.3) for K = 10, β = 1, a = 1, l = 0.8, w = 0.8, T = 1
and 0.5 ≤ µ ≤ 1.

Fig. 3. Bifurcation diagram of system (2.3) for K = 10, β = 1, a = 1, l = 0.8, w = 0.8, T = 1
and 0 ≤ µ ≤ 0.2.
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Fig. 4. (µ = 0.9) Dynamical behavior of the system with impulsive control of epidemics for pest
control: (a) time-series of the susceptible pest population; (b) time-series of the infective pest
population; and (c) phase portraits of system (2.3).

form of a periodic solution (see Fig. 5). A stable periodic solution (see Fig. 5d) is
captured when µ = 0.6. With the further decrease of µ, we see that the dynamical
behavior of system (2.3) is very complicated (see Fig. 3). In Fig. 6, we may find
that there exists a strange attractor for µ = 0.35.

Our aim is to keep susceptible pests at an acceptably low level (below the eco-
nomic injury level (EIL) that indicates the pest densities (numbers of pests per
unit area) at which artificial control measures are economically justified. In other
words, at this level the cost of control is less than the loss the farmer, forester, or
other resource producer would suffer if control action were not taken34) by releas-
ing infected pests: not to infect all pests, only to control susceptible pests with a
minimum use of the control variable (the amount of infective pests released).

For example, let E0(= 1 < 1.25, see Fig. 2) be the number of the susceptible pest
population reaching the economic injury level (see Figs. 1 and 2). We only consider
controlling the number of susceptible pests as infective pests cannot attack crops.
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(a) (b)

(c) (d)

Fig. 5. (µ = 0.6) Dynamical behavior of the system with impulsive control of epidemics for pest
control: (a) time-series of the susceptible pest population; (b) time-series of the infective pest
population; and (c) and (d) phase portraits of system (2.3).

Recalling Fig. 5, we choose µ = 0.6, then find that S < E0 as t ≥ 75. Obviously,
our strategy to control target pests is successful. If we choose µ ≤ 0.45 (see Fig. 1),
the system experiences chaotic behavior. Clearly, when µ = 0.35, we know that the
number of susceptible pests must exceed E0 at some time (see Fig. 6). Recalling
Fig. 1, if let E0 > 1.25, we see that when µ < 0.53, S may experience chaos. One
can choose the release amount of infected pests µ to exceed 0.53, then the number
of susceptible pests may be controlled below E0.

If we choose our mixed impulsive control strategy, which uses a combination
of biological and chemical tactics, for the purpose of suppressing the abundance of
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(a) (b)

(c)

Fig. 6. (µ = 0.35) Dynamical behavior of the system with impulsive control of epidemics for
pest control: (a) time-series of the susceptible pest population; (b) time-series of the infective pest
population; and (c) a strange attractor.

the pest, from Theorem 4.2, we know that the so-called susceptible pest-eradication
periodic solution (0, I∗2 (t)) is globally asymptotically stable if

µ > µmax =
w(T − ln 1

1−p1
)(1 − (1 − p2)(exp(−wT )))

( 1
K + β)(1 − p2 exp(−wl̃T ) − (1 − p2)(exp(−wT )))

.

A typical susceptible pest-eradication periodic solution of system (2.4) is shown in
Fig. 7, where we observe how the variable I(t) oscillates in a stable cycle. In contrast,
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Fig. 7. (µ = 0.85) Dynamical behavior of the system with impulsive control for pest management

with K = 100, a = 1, l = 0.8, w = 0.8, el = 0.75, β = 1, p1 = 0.2, p2 = 0.3, T = 1: (a) time-series
of the susceptible pest population; (b) time-series of the infective pest population; and (c) phase
portraits of system (2.4).

the susceptible pest S(t) rapidly decreases to zero and µmax ≈ 0.81. In order to
drive the susceptible pest population to extinction, we can determine the impulsive
amount µ according to the effect of the chemical pesticides on the pest population
and the cost of the releasing infective pests such that µ > µmax. With the further
decrease of µ, numerical results show that susceptible pests and infective pests can
co-exist on a stable limit cycle, which is a global attractor (see Fig. 8). A good pest
control program should reduce susceptible pest population to levels acceptable to
the public. It will be very interesting to consider the non-autonomous models with
impulsive effects corresponding to models (2.3) and (2.4). These issues would be
left for future consideration.
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(a) (b)

(c) (d)

Fig. 8. (µ = 0.75) Dynamical behavior of the system with impulsive control for pest management

for K = 100, a = 1, l = 0.8, w = 0.8, el = 0.75, β = 1, p1 = 0.2, p2 = 0.3, T = 1: (a) time-series
of the susceptible pest population; (b) time-series of the infective pest population; and (c) phase
portraits of system (2.4); (d) a global attractor.
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Appendix A: Proof of Theorem 4.1

Firstly, we prove the local stability by using small amplitude perturbation methods.
Let us denote

S(t) = u(t), I(t) = v(t) + I∗1 (t),

where u, v are small amplitude perturbations. The system (2.3) can be expanded in
a Taylor series. After neglecting higher-order terms, the linearized equations read as

u̇(t) = u(t) − βu(t)I∗1 (t),
v̇(t) = βI∗1 (t)u(t) − wv(t),

}
t �= nT,

u(t+) = u(t),
v(t+) = v(t),

}
t = nT.

(A.1)

Let Φ(t) be the fundamental matrix of (A.1). Then Φ(t) must satisfy

dΦ(t)
dt

=
(

1 − βI∗1 (t) 0
βI∗1 (t) −w

)
Φ(t)

and Φ(0) = I. Hence the fundamental solution matrix is

Φ(t) =

(
exp

( ∫ t

0 (1 − βI∗1 (s))ds
)

0
∗ exp(−wt)

)
.

It follows from the linearization of the last two equations of (A.1) that(
u(nT +)
v(nT +)

)
=
(

1 0
0 1

)(
u(nT )
v(nT )

)
.
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Hence, if both eigenvalues of

M =
(

1 0
0 1

)
Φ(T )

have absolute values less than one, then the periodic solution (0, I∗1 (t)) is locally
stable. Since the eigenvalues of M are

λ1 = exp(−wT ) < 1, λ2 = exp

(∫ T

0

(1 − βI∗1 (s))ds

)
,

|λ2| < 1 if and only if (4.1) holds. According to the Floquet theory of impulsive dif-
ferential equation (see the above), the periodic susceptible prey-eradication solution
(0, I∗1 (t)) is locally stable.

Next, we prove the global attractivity. Choose a ε > 0 such that:

ζ
.= exp

(∫ T

0

(
1 − β

1 + aM l
(I∗1 (s) − ε)

)
ds

)
< 1.

Noting that I ′(t) ≥ −wI(t), from Lemmas 3.3 and 3.4, we have

I(t) > I∗1 (t) − ε (A.2)

for all t large enough. For simplification, we may assume that (A.2) holds for all
t ≥ 0. From (2.3) and (A.2), we get

S′(t) ≤ S(t)
(

1 − β

1 + aM l
(I∗1 (t) − ε)

)
. (A.3)

Integrating (A.3) on (nT, (n + 1)T ], one obtains

S((n + 1)T ) ≤ S(nT ) exp

(∫ (n+1)T

nT

(
1 − β

1 + aM l
(I∗1 (t) − ε)

)
dt

)
= S(nT )ζ.

Thus S(nT ) ≤ S(0+)ζn and S(nT ) → 0 as n → ∞. Therefore, S(t) → 0 as t → ∞
since 0 < S(t) ≤ S(nT ) exp(T ) for t ∈ (nT, (n + 1)T ].

In the following, we prove that I(t) → I∗1 (t) as t → ∞. For 0 < ε < w
β , there

must exist a T̃ > 0 such that 0 < S(t) < ε as t ≥ T̃ . Without loss of generality, we
may assume 0 < S(t) < ε as t ≥ 0. Then, from (2.3), we have

−wI(t) ≤ I ′(t) < (−w + βε)I(t) for t ≥ 0.

From Lemmas 3.3 and 3.4, we obtain that y1(t) ≤ I(t) ≤ y2(t) for t ≥ 0 and
consequently y1(t) → I∗1 (t), y2(t) → y∗

2(t) as t → ∞, where y1(t) and y2(t) are the
solutions of 

y′
1(t) = −wy1(t), t �= nT,

∆y1(t) = µ, t = nT,

y1(0+) = I0
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and 
y′
2(t) = (−w + βε)y2(t), t �= nT,

∆y2(t) = µ, t = nT,

y2(0+) = I0,

respectively, where

y∗
2(t) =

µ exp((−w + βε)(t − nT ))
1 − exp((−w + βε)T )

, nT < t ≤ (n + 1)T.

Therefore, I∗1 (t) − ε1 < I(t) < y∗
2(t) + ε1, for t large enough. Let ε → 0, we get

y∗
2(t) → I∗1 (t). Hence I(t) → I∗1 (t) as t → ∞. This completes the proof.

Appendix B: Proof of Theorem 4.2

We firstly show the local stability by using small amplitude perturbation methods.
Define

S(t) = u(t), I(t) = v(t) + I∗2 (t),

where u, v are small amplitude perturbations. The system (2.4) can be expanded in
a Taylor series. After neglecting higher-order terms, the linearized equations read as

u̇(t) =
(
1 − ( 1

K + β
)
I∗2 (t)

)
u(t),

v̇(t) = βI∗2 (t)u(t) − wv(t),

}
t �= (n + l̃ − 1)T, t �= nT,

�u(t) = −p1u(t),
�v(t) = −p2v(t),

}
t = (n + l̃ − 1)T,

�u(t) = 0,

�v(t) = 0,

}
t = nT.

(B.1)

Let Φ(t) be the fundamental matrix of (B.1). Then Φ(t) must satisfy

dΦ(t)
dt

=

(
1 − ( 1

K + β
)
I∗2 (t) 0

βI∗2 (t) −w

)
Φ(t)

and Φ(o) = I. Hence the fundamental solution matrix is

Φ(t) =

(
exp(

∫ t

0

(
1 − ( 1

K + β
)
I∗2 (s)

)
ds) 0

∗ exp(−wt)

)
.

The linearization of the third and fourth equation in (B.1) becomes(
u((n + l̃ − 1)T +)
v((n + l̃ − 1)T +)

)
=
(

1 − p1 0
0 1 − p2

)(
u((n + l̃ − 1)T )
v((n + l̃ − 1)T )

)
.

The linearization of the fifth and sixth equation in (B.1) becomes(
u(nT +)
v(nT +)

)
=
(

1 0
0 1

)(
u(nT )
v(nT )

)
.
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Hence, if both eigenvalues of

M∗ =
(

1 − p1 0
0 1 − p2

)(
1 0
0 1

)
Φ(T )

have absolute values less than one, then the periodic solution (0, I∗2 (t)) is locally
stable. Since the eigenvalues of M∗ are

λ1 = (1 − p2) exp(−wT ) < 1, λ2 = (1 − p1) exp

(∫ T

0

(
1 −

(
1
K

+ β

)
I∗2 (s)

)
ds

)
,

|λ2| < 1 if and only if (4.2) holds. According to Floquet theory of impulsive dif-
ferential equations, the periodic susceptible prey-eradication solution (0, I∗2 (t)) is
locally stable.

Next, we prove the global attractivity. Choose ε > 0 such that:

ζ
.= (1 − p1) exp

(∫ T

0

(
1 −

(
1
K

+
β

1 + aM l

)
(I∗2 (s) − ε)

)
ds

)
< 1.

Noting that I ′(t) ≥ −wI(t), from Lemmas 3.3 and 3.5, we have

I(t) > I∗2 (t) − ε (B.2)

for all t large enough. For simplification, we may assume that (B.2) holds for all
t ≥ 0. From (2.4) and (B.2), we getS′(t) ≤ S(t)

(
1 −

(
1
K

+
β

1 + aM l

)
(I∗2 (t) − ε)

)
, t �= (n + l̃ − 1)T,

S(t+) = (1 − p1)S(t), t = (n + l̃ − 1)T.
(B.3)

Integrating (B.3) on ((n + l̃ − 1)T, (n + l̃)T ], one obtains

S((n + l̃)T ) ≤ S((n + l̃ − 1)T )(1 − p1)

× exp

(∫ (n+el)T

(n+el−1)T

(
1 −

(
1
K

+
β

1 + aM l

)
(I∗2 (t) − ε)

)
dt

)
= S((n + l̃ − 1)T )ζ.

Thus S((n + l̃)T ) ≤ S(l̃T )ζn and S((n + l̃)T ) → 0 as n → ∞. Hence, S(t) → 0 as
t → ∞ since 0 < S(t) ≤ S((n+ l̃−1)T )(1−p1) exp(T ) for t ∈ ((n+ l̃−1)T, (n+ l̃)T ].

In the following, we are ready to prove that I(t) → I∗2 (t) as t → ∞. For 0 <

ε′ < w
β , there must exist a T̃ > 0 such that 0 < S(t) < ε′ as t ≥ T̃ . Without loss of

generality, we may assume that 0 < S(t) < ε′ as t ≥ 0. Then, from (2.4), we have

−wI(t) ≤ I ′(t) < (−w + βε′)I(t) for t ≥ 0.
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From Lemmas 3.3 and 3.5, we obtain that y1(t) ≤ S(t) ≤ y2(t) for t ≥ 0y1 and
consequently (t) → I∗2 (t), y2(t) → y∗

2(t) as t → ∞, where y1(t) and y2(t) are the
solutions of 

y′
1(t) = −wy1(t), t �= (n + l̃ − 1)T, t �= nT,

�y1(t) = −p2y1(t), t = (n + l̃ − 1)T,

�y1(t) = µ, t = nT,

y1(0+) = I0

and 
y′
2(t) = (−w + βε′)y2(t), t �= (n + l̃ − 1)T, t �= nT,

�y2(t) = −p2y2(t), t = (n + l̃ − 1)T,

�y2(t) = µ, t = nT,

y2(0+) = I0,

respectively, where

y∗
2(t) =


µ exp((−w + βε′)(t − (n − 1)T ))
1 − (1 − p2) exp((−w + βε′)T )

, (n − 1)T < t ≤ (n + l̃ − 1)T,

µ(1 − p2) exp((−w + βε′)(t − (n − 1)T ))
1 − (1 − p2) exp((−w + βε′)T )

, (n + l̃ − 1)T < t ≤ nT.

Therefore,

I∗2 (t) − ε1 < I(t) < y∗
2(t) + ε1, (ε1 > 0)

for t large enough. Letting ε′ → 0, we derive that y∗
2(t) → I∗2 (t) and hence I(t) →

I∗2 (t) as t → ∞. This completes the proof.

Appendix C: Proof of Theorem 4.3

Suppose that x(t) is a solution of (2.3) with x(0) > 0. From Lemma 3.2, there exists
a positive constant M(< K) such that S(t) ≤ M and I(t) ≤ M for t large enough.
Without loss of generality, we may assume that S(t) ≤ M , I(t) ≤ M for t ≥ 0.

From (A.2), we know that I(t) > I∗1 (t) − ε for t large enough. Consequently,
I(t) ≥ µ exp(−wT ))

1−exp(−wT ) − ε
.= m2 for t large enough. Thus we only need to find m1 > 0,

such that S(t) ≥ m1 for t large enough. We have split the procedure of finding m1

in the following two steps for convenience.

Step I. Let m3 > 0, ε > 0 be small enough such that βm3
1+aml

3
< w and η

.= exp
(
(1−

m3
K )T − εβT + βµ

βm3
1+aml

3
−w

)
> 1. We shall show that S(t) < m3 cannot hold for all
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t ≥ 0. Otherwise,I ′(t) ≤
(
− w +

βS(t)
1 + aSl(t)

)
I(t) ≤

(
βm3

1 + aml
3

− w

)
I(t), t �= nT,

∆I(t) = µ, t = nT.

Then we obtain that I(t) ≤ y3(t) and y3(t) → y∗
3(t) as t → ∞, where y3(t) is the

solution of 
y′
3(t) =

(
βm3

1 + aml
3

− w

)
y3(t), t �= nT,

∆y3(t) = µ, t = nT,

y3(0+) = I0,

(C.1)

and

y∗
3(t) =

µ exp
((

βm3
1+aml

3
− w

)
(t − (n − 1)T )

)
1 − exp

((
βm3

1+aml
3
− w

)
T
) , (n − 1)T < t ≤ nT. (C.2)

Therefore, there exists T̂ > 0 such that

I(t) ≤ y3(t) < y∗
3(t) + ε

for t > T̂ . From (2.3), we have

S′(t) ≥
(

1 − m3

K
− β(y∗

3(t) + ε)
)

S(t). (C.3)

Let N ∈ Z+ such that (N − 1)T ≥ T̂ . Integrating (C.3) on ((n − 1)T, nT ], n ≥ N ,
we get

S(nT ) ≥ S((n − 1)T ) exp

(∫ nT

(n−1)T

(
1 − m3

K
− β(y∗

3(t) + ε)
)

dt

)
= S((n − 1)T )η.

Then S((n + k)T ) ≥ S(nT )ηk → ∞ as k → ∞, which contradicts to the bounded-
ness of S(t). Thus, there exist a t1 > 0 such that S(t1) ≥ m3.

Step II. If S(t) ≥ m3 for all t ≥ t1, then our aim is obtained. Otherwise, S(t) < m3

for some t ≥ t1. Set t∗ = inft>t1{S(t) < m3}. Then S(t) ≥ m3 for t ∈ [t1, t∗) and
t∗ ∈ (n1T, (n1 + 1)T ], n1 ∈ Z+. It is easy to see that S(t∗) = m3 since S(t) is
continuous. Choose n2, n3 ∈ Z+ such that

n2T >
1

βm3
1+aml

3
− w

ln
ε1

M + µ

1−exp
((

βm3
1+aml

3
−w
)
T
) ,

exp(n2η1T )ηn3 > 1,

where η1 = 1 − m3
K − βM < 0. Let T ′ = n2T + n3T . We claim that there exists a

t2 ∈ (t∗, t∗+T ′] such that S(t2) > m3. Otherwise, we consider (C.1) with y3(t∗+) =
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I(t∗+) (only if t∗ = nT for some n ∈ Z+) and we see that

y3(t) =
(

y3((n1 + 1)T +) − µ

1 − exp
((

βm3
1+aml

3
− w

)
T
))

exp
((

βm3

1 + aml
3

− w

)
(t − (n1 + 1)T ) + y∗

3(t),

nT < t ≤ (n + 1)T where n1 + 1 ≤ n ≤ n1 + n2 + n3. Then |y3(t) − y∗
3(t)| <(

M + µ

1−exp
((

βm3
1+aml

3
−w
)
T
)) exp

((
βm3

1+aml
3
− w

)
(t − (n1 + 1)T )

)
< ε1 and I(t) <

y3(t) ≤ y∗
3(t)+ ε1 for n1T +(n2− 1)T ≤ t ≤ t∗ +T ′, which implies that (C.3) holds

for t ∈ [(t∗ + n2T ), (t∗ + T ′)]. As in Step I, we get

S(t∗ + T ′) ≥ S(t∗ + n2T )ηn3 . (C.4)

From (C.3), we get

S′(t) ≥
(

1 − m3

K
− βM

)
S(t) (C.5)

for t ∈ [t∗, (t∗ + n2T )]. Integrating (C.5) on [t∗, (t∗ + n2T )], we obtain

S(t∗ + n2T ) ≥ m3 exp(n2η1T ).

Consequently, we have

S(t∗ + T ′) ≥ m3 exp(n2η1T )ηn3 > m3,

which is a contradiction. Let t̃ = inft>t∗{S(t) > m3}. Then for t ∈ (t∗, t̃), S(t) ≤ m3

and S(t̃) = m3. For t ∈ (t∗, t̃), we get

S(t) ≥ m3 exp((n2 + n3)η1T ).

Let
m1 = m3 exp((n2 + n3)η1T ). With this notation we have S(t) ≥ m1 for t ∈ (t∗, t̃).
For t > t̃, the same arguments can be continued since S(t) ≥ m3. This completes
the proof.

Appendix D: Proof of Theorem 4.4

Suppose that x(t) is a solution of (2.4) with x(0) > 0. From Lemma 3.2, there exists
a positive constant M(< K) such that S(t) ≤ M and I(t) ≤ M for t large enough.
Without loss of generality, we may assume that S(t) ≤ M , I(t) ≤ M for t ≥ 0.

From (B.2), we know that I(t) > I∗2 (t) − ε for t large enough. Consequently
I(t) ≥ µ(1−p2) exp(−wT ))

1−exp(−wT ) − ε
.= m2 for t large enough. Thus we only need to find

m1 > 0, such that S(t) ≥ m1 for t large enough. We have split the procedure of
finding m2 in the following two steps for convenience.

Step I. Let m3 > 0, ε > 0 be small enough such that
βm3

1 + aml
3

< w
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and

η
.= (1 − p1) exp

((
1 − m3

K

)
T − ε

(
1
K

+ β

)
T

−
(

1
K + β

)
µ
(
1 − p2 exp

((
βm3

1+aml
3
− w

)
lT
)− (1 − p2) exp

((
βm3

1+aml
3
− w

)
T
))(

w − βm3
1+aml

3

)(
1 − (1 − p2) exp

((
βm3

1+aml
3
− w

)
T
))


> 1,

We shall show that S(t) < m3 cannot hold for all t ≥ 0. Otherwise,

I ′(t) ≤
(
− w +

βS(t)
1 + aSl(t)

)
I(t)

≤
(

βm3

1 + aml
3

− w

)
I(t), t �= (n + l̃ − 1)T, t �= nT,

�I(t) = −p2I(t), t = (n + l̃ − 1)T,

�I(t) = µ, t = nT.

Then we obtain that I(t) ≤ y3(t) and y3(t) → y∗
3(t) as t → ∞, where y3(t) is the

solution of
y′
3(t) =

(
βm3

1 + aml
3

− w

)
y3(t), t �= (n + l̃ − 1)T, t �= nT,

�y3(t) = −p2y3(t), t = (n + l̃ − 1)T,

�y3(t) = µ, t = nT,

y3(0+) = x20

(D.1)

and

y∗
3(t) =



µ exp
((

βm3
1+aml

3
− w

)
(t − (n − 1)T )

)
1 − (1 − p2) exp

((
βm3

1+aml
3
− w

)
T
) ,

(n − 1)T < t ≤ (n + l̃ − 1)T,

µ(1 − p2) exp
((

βm3
1+aml

3
− w

)
(t − (n − 1)T )

)
1 − (1 − p2) exp

((
βm3

1+aml
3
− w

)
T
) ,

(n + l̃ − 1)T < t ≤ nT.

(D.2)

Therefore, there exists T̂ > 0 such that

I(t) ≤ y3(t) < y∗
3(t) + ε

for t > T̂ . From (2.4), we haveS′(t) ≥
(

1 − m3

K
−
(

1
K

+ β

)
(y∗

3(t) + ε)
)

S(t), t �= (n + l̃ − 1)T,

�S(t) = −p1S(t), t = (n + l̃ − 1)T,
(D.3)



June 26, 2007 6:7 WSPC/129-JBS 00210

Impulsive Control Strategies for Pest Management 259

for t ≥ T̂ . Let N ∈ Z+ such that (N + l̃ − 1)T ≥ T̂ . Integrating (D.3) on
((n + l̃ − 1)T , (n + l̃)T ], n ≥ N , we get

S((n + l̃)T ) ≥ S((n + l̃ − 1)T )(1 − p1)

× exp

(∫ (n+el)T

(n+el−1)T

(
1 − m3

K
−
(

1
K

+ β

)
(y∗

3(t) + ε)
)

dt

)
= S((n + l̃ − 1)T )η,

then S((N + n + l̃ − 1)T ) ≥ S((n + l̃)T )ηn → ∞ as n → ∞, which contradicts to
the boundedness of S(t). Then there exist a t1 > 0 such that S(t1) ≥ m3.

Step II. If S(t1) ≥ m3 for all t ≥ t1, then our aim is obtained. Otherwise, S(t) < m3

for some t ≥ t1. Set t∗ = inft>t1{S(t) < m3}. We should consider two possible cases
for t∗.

Case I. t∗ = (n1 + l̃ − 1)T , n1 ∈ Z+. Then S(t) ≥ m3 for t ∈ [t1, t∗], and
(1 − p1)m3 ≤ S(t∗+) = (1 − p1)S(t∗) < m3. Choose n2, n3 ∈ Z+ such that

n2T >
1

βm3
1+aml

3
− w

ln
ε1

M + µ

1−(1−p2) exp
((

βm3
1+aml

3
−w
)
T
) ,

(1 − p1)n2 exp(n2η1T )ηn3 > 1,

where η1 = 1 − m3
K − ( 1

K + β
)
M < 0. Let T ′ = n2T + n3T . We claim that there

exist a t2(t∗, t∗ + T ′] such that S(t2) > m3. Otherwise, we consider (D.1) with
y3(t∗+) = I(t∗+), and get

y3(t) =



(1 − p2)n−(n1+1)

y3(n1T
+) − µ

1 − (1 − p2) exp
((

βm3
1+aml

3
− w

)
T
)


exp
((

βm3

1 + aml
3

− w

)
t

)
+ y∗

3(t), (n − 1)T < t ≤ (n + l̃ − 1)T,

(1 − p2)n−n1

y3(n1T
+) − µ

1 − (1 − p2) exp
((

βm3
1+aml

3
− w

)
T
)


exp
((

βm3

1 + aml
3

− w

)
t

)
+ y∗

3(t), (n + l̃ − 1)T < t ≤ nT,

where n1 + 1 ≤ n ≤ n1 + n2 + n3. Then |y3(t) − y∗
3(t)| <

(
M +

µ

1−(1−p2) exp
((

βm3
1+aml

3
−w
)
T
)) exp

((
βm3

1+aml
3
−w
)
(t−(n1+1)T )

)
< ε1 and I(t) < y3(t) ≤
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y∗
3(t) + ε1 for n1T + (n2 − 1)T ≤ t ≤ t∗ + T ′, which implies that (D.3) holds for

t ∈ [(t∗ + n2T ), (t∗ + T ′)]. As in Step I, we get

S(t∗ + T ′) ≥ S(t∗ + n2T )ηn3 . (D.4)

From (2.4), we getS′(t) ≥
(

1 − m3

K
−
(

1
K

+ β

)
M

)
S(t), t �= (n + l̃ − 1)T,

�S(t) = −p1S(t), t = (n + l̃ − 1)T
(D.5)

for t ∈ [t∗, (t∗ + n2T )]. Integrating (D.5) on [t∗, (t∗ + n2T )], we obtain

S(t∗ + n2T ) ≥ m3(1 − p1)n2 exp(n2η1T ).

Consequently, we get

S(t∗ + T ′) ≥ m3(1 − p1)n2 exp(n2η1T )ηn3 > m3,

which is a contradiction. Let t̃ = inft>t∗{S(t) > m3}. Then for t ∈ (t∗, t̃), S(t) ≤ m3

and S(t̃) = m3. For t ∈ (t∗, t̃), we get

S(t) ≥ m3(1 − p1)n2+n3 exp((n2 + n3)η1T ).

Let m1 = m3 exp((n2 + n3)η1T ). With this notation we have S(t) ≥ m1 for t ∈
(t∗, t̃). For t > t̃, the same arguments can be continued since S(t) ≥ m3.

Case II. t∗ �= (n+ l̃−1)T , n ∈ Z+. Then S(t) ≥ m3 for t ∈ [t1, t∗] and S(t∗) = m3.
Suppose that t∗ ∈ ((n1 + l̃ − 1)T, (n1 + l̃)T ), n1 ∈ Z+. There are two possible
sub-cases for t ∈ (t∗, (n1 + l̃)T ).

Case II1 For all t ∈ (t∗, (n1 + l̃)T ), S(t) ≤ m3. Similarly to Case I we can prove
that there exist a t′2 ∈ [(n1 + l̃)T, (n1 + l̃)T + T ′] such that S(t′2) > m3.

Let t = inft>t∗{S(t) > m3}, then for t ∈ (t∗, t), S(t) ≤ m3 and S(t) = m3. For
t ∈ (t∗, t), we get

S(t) ≥ m3(1 − p1)n2+n3 exp((n2 + n3 + 1)η1T ).

Let m1 = m3(1 − p1)n2+n3 exp((n2 + n3 + 1)η1T ) < m1(η1 < 0). We then have
S(t) ≥ m1 for t ∈ (t∗, t). For t > t̃, the same arguments can be continued since
S(t) ≥ m3.

Case II2 There exists t ∈ (t∗, (n1 + l̃)T ) such that S(t) > m3. Let
t̂ = inft>t∗{S(t) > m3}. Then for t ∈ (t∗, t̂), S(t) ≤ m3 and S(t̂) = m3. For
t ∈ (t∗, t̂), (D.3) holds. Integrating (D.3) on (t∗, t̂), we obtain

S(t) ≥ x1(t∗) exp(η1(t − t∗)) ≥ m3 exp(η1T ) > m1.

Since S(t̂) ≥ m3, for t > t̂ the same arguments can be continued, so we omit them.
Hence, S(t) ≥ m1 for t ≥ t1. This completes the proof.


