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Abstract: We model a common teller–customer interaction occurring in the Ghanaian banking sector
via a Double-X queuing network consisting of three single servers with infinite-capacity buffers. The
servers are assumed to face independent general renewal of customers and independent identically
distributed general service times, the inter-arrival and service time distributions being different for
each server. Servers, when free, help serve customers waiting in the queues of other servers. By using
the fluid limit approach, we find a sufficient stability condition for the system, which involves the
arrival and service rates in the form of a set of inequalities. Finally, the model is validated using an
illustrative example from a Ghanaian bank.

Keywords: Double-X cascade network; Lyapunov function; fluid limit approach; interacting server

1. Introduction

The competition resulting from a decade of deregulation in the Ghanaian banking
industry is now becoming more intense, due to the regulatory imperatives of worldwide
banking and to the customers becoming increasingly aware of their rights [1,2]. On the one
hand, bank customers have become increasingly demanding, requiring high quality, low
priced and immediate service delivery [3], a key development being the entry of private
banks into the market and the expansion of branches of existing banks. On the other hand,
banks have found new methods to differentiate their products and services to attract new
customers [4].

Queuing theory aims at developing mathematical and numerical models to investigate
the formation and congestion of waiting lines when a service is requested, its basic ideas
being proposed by A. K. Erlang. In this regard, there is a high probability for one to queue at
least once during everyday activities before a service is rendered [5,6]. Common experience
suggests that the act of queuing is associated with waiting, which is an inevitable part of
modern life. This leads to the idea that queuing theory has very wide applications [7]. For
example, customers waiting to be served at grocery stores, banks and post offices, people
having to wait for an operator during a telephone call, people waiting for a taxi or a bus on
the way to the workplace can be thought as subjects of queuing theory [8,9].

Even queues that are generally non-problematic may become a nuisance if not man-
aged well. For the banking sector, this requires a swift management of the server–customer
relationship since queuing cannot be excluded from the daily operation of a bank [10,11].
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Service delivery in banks is personal, customers being either served immediately or joining
a queue (waiting line) if servers are busy. A queue occurs if facilities are limited and
cannot satisfy the demand during a particular period. However, most customers are not
comfortable with waiting or queuing, the time wasted in the queue being perceived as an
opportunity cost [12,13]. Performing financial activities can, however, be time consuming
and tedious within the limitations of the traditional methods of banking. A recent contri-
bution by [14] found that the banks in Ghana have grown through different eras and now
comprise several branches across the breadth of the country, operating in almost every
district. The majority of banks in Ghana have been listed on the Ghana stock exchange
market since 1996 [15]. Their growth has been synonymous with the growth of their
customer base, performance, innovative product and services profitability.

As far as the modeling of the banking sector is concerned, a queuing system consisting
of two basic customer classes; two servers were discussed from a mathematical viewpoint
in [16,17]. Class-j customers were primarily assigned to station-j, j = 1, 2. However,
customers could move from station-1 to station-2 but not from station-2 to station-1. Ad-
ditionally, an arriving class-2 customer would interrupt the current service of a customer
who moved from station-1 to station-2, the former being served immediately, while the
latter could not come back to station-1, even if Server-1 was free. The service of the moving
customers would later be resumed from the point at which it was interrupted. Such a
two-station system is called a cascade network [17].

In [18], a bi-objective optimization problem was considered, the first objective being
to maximize the total profit and the second one being to minimize the average length of
queuing at workstations, and optimal values for the decision variables were determined.
According to [19], competitive queuing (CQ) models of working memory (WM) rely
upon two underlying mechanisms, namely excitatory parallel planning and inhibitory
competitive choice/response suppression. While the former mechanism is responsible
for item activation, the latter is responsible for item recall followed by item suppression.
Other models in [16,20,21] revealed closely related systems with flexible servers, for which
a server might transfer the service capacity to accommodate the workload accumulated
in another server. In addition, systems with cross-trained servers in which certain servers
can handle a reduced set of customer types, whereas others accept all types, were also
discussed in [22,23]. A variety of real-life systems conforming to the above paradigm,
including service centers, production systems, computer networks with rescheduling of
jobs, and parallel computing systems for which processors have overlapping capabilities,
are described in [17]. The same considerations are applicable to manufacturing machines,
which have certain primary functions and a number of secondary ones, as described
in [24] via the so-called N-models with static priority rules. The particular case of a N-
station cascade network in which each station is only able to support the previous one was
analyzed in [16] from a stability viewpoint by using a fluid limit approach rather than a
more standard Foster type argument. Further details regarding this class of models are
given in [16].

However, most of these studies have limited practical success and little subsequent
impact, the vast majority of the existing models remaining unvalidated against real waiting
time and service time data. This happened since collecting these data were time-consuming,
expensive and record error in manual operation (see [6,25,26]).

A bare-bones model of a queuing network consists of two single-server stations with
independent general renewal inputs, independently identically distributed (i.i.d.) general
service times and infinite capacity buffers. However, most banks in Ghana operate with
three servers and with three buffers for customers [27], in which the first server only assists
the second server, the second server assists the first and third server if available, and
the third server in turn assists the second server only (see Figure 1). In view of these
characteristics of Ghanaian banking, so far, there is no existing model to formulate a
queuing network of immediate use in the Ghanaian banking sector.
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Consequently, the main objective of this paper is to formulate and analyze a so-called
Double-X queuing network model, and in this regard we have a prime opportunity to
take advantage of the detailed customer arrival time and service time data, automatically
collected by the Ghanaian Agricultural Development Bank to monitor compliance with
targets. The model is then validated using an illustrative example from the real data, for
which we find the arrival and service rate of customers over a given time slot. We then
ascertain the appropriateness of bank queue utilization at different levels and also give
a fair idea to customers on the amount of time they would be expected to spend in the
banking hall.

In this model, each server has an unlimited-capacity buffer for awaiting customers.
Customers arrive following an independent general renewal input and have i.i.d. general
service times when served at the same station. Inter-arrival times and service times are
possibly different for different customer classes. The service discipline is work-conserving
and obeys a FIFO (first in first out) scheduling algorithm within each class. Whenever a
buffer becomes empty while customers are awaiting service in other buffers, a customer
moves to be served there, provided that this is allowed in the given model.

In order to establish the stability of the fluid limit model associated to the queuing
network, we start by employing functional laws of large numbers for the renewal processes,
as motivated by [28]. In this regard, the choice of an appropriate Lyapunov function is
of paramount importance. Although the approaches are related, they do differ in certain
technical details. Particularly, we are not prompted to consider a Skorokhod problem for
our model [29], which means that we do not address the boundary problems of the state
spaces of the job count and workload processes, provided that a service station in a queuing
network is empty.

The remaining part of this paper is organized as follows. In Section 2, we introduce
and describe our Double-X queuing model, the research assumptions and the equations
that govern the processes associated with the network structure. Section 3 looks into
the stability analysis of this model. In particular, Section 3.1 introduces the associated
fluid limit model, and Section 3.2 is devoted to proving the stability result. Section 4 is
concerned with an analysis of real data. Finally, we present the summary of our findings
and conclusions in Section 5.

Figure 1. The Double-X cascade network.

2. The Model
2.1. Model Description

Servers
The teller position is a key one in banking, requiring qualified and experienced

personnel since tellers are generally the employees that customers first see and interact
with. We consider a queuing system consisting of three servers (tellers), which is a quite
common occurrence in a Ghanaian bank. The main job tasks and responsibilities of a server
towards customers are as follows:

1. Identify customers and process validation and cashing of checks.
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2. Process cash and checks depositing and check the accuracy of subsequent deposit slips.
3. Process cash withdrawals.
4. Prepare and issue cashier’s checks, traveler’s checks and personal money orders, and

also exchange foreign currency.
5. Receive and verify payments of utility bills, loans and mortgages.
6. Answer inquiries regarding checking and savings accounts and other banking products.
7. Attempt to resolve issues raised by the customers.
8. Open new accounts.
9. Explain, advise on and promote bank products and services to customers.

Servers typically work from a station, usually located on a server line as shown in
Figure 1. In our model, the responsibilities of Server-1 are to serve customers who fall
within categories 1–4, and as soon as Server-2 becomes free, customers waiting in Buffer-1
(if any) switch to Buffer-2 to be served there immediately. The responsibilities of Server-2
are to serve customers who fall within category 1–9 and, if Server-1 is free, customers
who require services 1–4 switch to Buffer-1 for service, while those requiring services 5–9
move to Buffer-3, if Server-3 is free for service. The responsibilities of Server-3 are to serve
customers who fall within categories 5–9; if Server-2 is free, customers waiting in Buffer-3
(if any) switch to start service there immediately. Servers are cross-trained so that they can
serve customers from other buffers when they become free.

Customer classes
Class-j, j = 1, 2, 3 are the exogenous customers who arrive at Server-j for service, while

Class-(i, j) customers are those moving from Server-i to Server-j for service,
(i, j) = (1, 2), (2, 1), (2, 3) and (3, 2). In what follows, we use the index j (the double
index (i, j)) to denote Class-j (respectively Class-(i, j)) customers.

Service and arrival times
Following the standard definitions on interarrival times and service times given

in [28], we let ξ j(i), i > 2 be the i.i.d. inter-arrival times of i-th Class-j customer entering the
network after instant 0, where j = 1, 2, 3 and let ηk(i), i > 2 be the i.i.d. service times of the
i-th Class-k customer being served after instant 0, k = 1, 2, 3, (1, 2), (2, 1), (2, 3) and (3, 2).
All sequences (service and arrival time) are mutually independent. The residual arrival
time ξ j(1) of the first Class-j customer entering the system after instant 0 is independent of{

ξ j(i), i > 2
}

, j = 1, 2, 3. Additionally, the residual service time ηk(1), of a Class-k customer
initially being served, if any, is independent of {ηk(i), i > 2}.

Following the idea from [16], we introduce the arrival rate λj =
1

Eξ j
of Class-j customers,

j = 1, 2, 3 and the service rate µk =
1

Eηk
of Class-k customers, k = 1, 2, 3, (1, 2), (2, 1), (2, 3)

and (3, 2) (see Figure 1). Additionally, the following standard conditions are imposed:
Eξ j < ∞, j =1, 2, 3.

Eηk < ∞, k =1, 2, 3, (1, 2), (2, 1), (2, 3), (3, 2).

P(ξ j > x) > 0, j =1, 2, 3, for any x ∈ [0, ∞).

(1)

We also assume that inter-arrival times are spread out, that is, for some integers sj > 1
and functions f j > 0 with

∫ ∞
0 f j(y)dy > 0 as follows:

P

(
a ≤

sj

∑
i=2

ξ j(i) ≤ b

)
>
∫ b

a
f j(y)dy, 0 ≤ a ≤ b, j = 1, 2, 3. (2)

2.2. Model Assumptions

The Double-X cascade model is an appropriate one to use for this study under the
following assumptions.
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(i) Service discipline is assumed to be non-idling, that is, servers cannot be idle if there
are waiting customers in their allocated buffers.

(ii) Service discipline is also non-preemptive, which means that a running task cannot
be disturbed, that is, customers who are in the process of being served cannot be
interrupted.

(iii) Priority is given to customers waiting in their approved buffers over those who move
from their rightful buffers to a different buffer.

(iv) Customers who enter the system do not leave unless they are served.

We begin by introducing several notations and primitive processes of the network.
The exogenous arrival process is denoted by the following:

E(t) .
=
(
E1(t), E2(t), E3(t)

)
, t ≥ 0,

for which

Ej(t)
.
= max

{
n ≥ 1 :

n

∑
i=1

ξ j(i) ≤ t

}
is the total number of Class-j arrivals in the interval [0, t], j = 1, 2, 3. The served customers
process is given by the following:

S .
=
{
(S1(t), S2(t), S3(t), S1,2(t), S2,1(t), S2,3(t), S3,2(t)), t ≥ 0

}
,

and the renewal process

Sk(t)
.
= max

{
n ≥ 1 :

n

∑
i=1

ηk(i) ≤ t

}

representing the total number of Class-k customers served in [0, t], if the server devotes all
time to Class-k customers, k = 1, 2, 3, (1, 2), (2, 1), (2, 3) and (3, 2). By definition, Ej(0) =
Sk(0) = 0 for all k, j.

We now introduce descriptive processes which measure the performance of the net-
work. Let us denote the following:

D =
{

D(t) .
= (D1(t), D2(t), D3(t), D1,2(t), D2,1(t), D2,3(t), D3,2(t)), t > 0

}
,

Z =
{

Z(t) .
= (Z1(t), Z2(t), Z3(t), Z1,2(t), Z2,1(t), Z2,3(t), Z3,2(t)), t > 0

}
,

T =
{

T(t) .
= (T1(t), T2(t), T3(t), T1,2(t), T2,1(t), T2,3(t), T3,2(t)), t > 0

}
,

Q ={Q(t) .
= (Q1(t), Q2(t), Q3(t)), t > 0},

Y ={Y(t) .
= (Y1(t), Y2(t), Y3(t)), t > 0},

U ={U(t) .
= (U1(t), U2(t), U3(t)), t > 0},

V =
{

V(t) .
= (V1(t), V2(t), V3(t), V1,2(t), V2,1(t), V2,3(t), V3,2(t)), t > 0

}
,

their definitions being summarized in Table 1 below.
The processes D, T and Y are nondecreasing and satisfy the initial conditions D(0) =

T(0) = Y(0) = 0, being assumed that Z(0) and Q(0) are independent. Assume the
processes U and V to be right continuous and define Vk(t) = 0 if Zk(t) = 0. Additionally,
note that Uj(0) = ξ j(1), while Vk(0) = ηk(1) if Zk(0) = 1. We then define the following
process:

X(t) =
{(

Q(t), Z(t), U(t), V(t)
)
, t > 0

}
,

describing the dynamics of the network within the state space Z3
+ × {0, 1}7 ×R3

+ ×R7
+.

Then the process X is a piecewise-deterministic Markov process.
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Table 1. Variables used in the model and their definitions, where j = 1,2,3 and k = 1, 2, 3, (1, 2), (2, 1), (2, 3), (3, 2).

Variable Definition

Dk(t) The number of Class-k customers who depart from the bank in the interval [0, t].

Zk(t) The number of Class-k customers that are being served at time t (Zk(t) ∈ {0, 1}).
Tk(t) The total service time devoted to Class-k customers in the interval [0, t].

Yj(t) The idle time of Server-j in the interval [0, t].

Qj(t) The number of customers in Buffer−j at time t.

Uj(t) The remaining time t before the next exogenous customer arrival to Class-j.

Vk(t) The remaining service time t before the next Class-k customer being served at time t.

2.3. The Queuing Network Equations

The following queuing network equations hold for t > 0:

Dk(t) =Sk(Tk(t)), k = 1, 2, 3, (1, 2), (2, 1), (2, 3), (3, 2). (3)

Equation (3) counts the total number of service completions for Class-k customers,
equal to the total number of Class-k customers departing from the bank at time t.

Q1(t) =Q1(0) + E1(t)− (D1(t) + Z1(t) + D1,2(t) + Z1,2(t)). (4)

Equation (4) indicates how customers are queuing in Buffer-1, waiting for service from
Server-1.

Q2(t) =Q2(0) + E2(t)− (D2(t) + Z2(t) + D2,1(t) + Z2,1(t) + D2,3(t) + Z2,3(t)). (5)

Equation (5) shows how customers are queuing in Buffer-2, waiting for service from
Server-2.

Q3(t) =Q3(0) + E3(t)− (D3(t) + Z3(t) + D3,2(t) + Z3,2(t)). (6)

Equation (6) also captures how customers are queuing in Buffer-3, waiting for service
from Server-3.

(T1(t) + T2,1(t)) + Y1(t) = (T2(t) + T1,2(t) + T3,2(t)) + Y2(t)

= (T3(t) + T2,3(t)) + Y3(t) = t.
(7)

Equation (7) counts the total service time of Server-j, j = 1, 2, 3, including the idle time.∫ ∞

0
Qj(t)dYj(t) = 0, j = 1, 2, 3. (8)

Equation (8) corresponds to a work-conserving scheduler, which always tries to keep
the scheduled resources busy. ∫ ∞

0
Q2(t)dY1(t) = 0. (9)

Equation (9) shows that Server-1 supports Server-2 and cannot be idle if there are
customers who require services 1–4 waiting in Buffer-2.∫ ∞

0
(Q1(t) + Q3(t))dY2(t) = 0. (10)
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Equation (10) means that Server-2 supports Server-1 and Server-3 and cannot be idle
if there are customers waiting in Buffer-1 and Buffer-3 for service.∫ ∞

0
Q2(t)dY3(t) = 0. (11)

Equation (11) shows that Server-3 cannot be idle if there are waiting customers in
Buffer-2 demanding services 5–9.∫ ∞

0
(Q1(t) + Z1(t))dT2,1(t) = 0. (12)

Equation (12) means that Server-1 gives priority to Class-1 customers over Class-2
customers who move from Buffer-2 to Buffer-1.∫ ∞

0
(Q3(t) + Z3(t))dT2,3(t) = 0. (13)

Equation (13) means that Server-3 gives priority to Class-3 customers over customers
who move from Buffer-2 to Buffer-3.∫ ∞

0
(Q2(t) + Z2(t) + Z3,2(t))dT1,2(t) = 0 and

∫ ∞

0
(Q2(t) + Z2(t) + Z1,2(t))dT3,2(t) = 0. (14)

Equation (14) means that Server-2 gives priority to Class-2 customers.
We still consider two priority phases for Server-2.
Phase 1 (priority 2 > 1 > 3): from Equation (15), Server-2 serves customers in their

rightful buffer, that is, Buffer-2, then proceeds to serve customers from Buffer-1 before
serving customers from Buffer-3:∫ ∞

0
(Q2(t) + Z2(t) + Q1(t) + Z1,2(t))dT3,2(t) = 0. (15)

Phase 2 (priority 2 > 3 > 1): also from Equation (16), Server-2 gives priority to Class-2
customers and customers who move from Buffer-3 to Buffer-2 over customers who move
from Buffer-1 to Buffer-2 for service:∫ ∞

0
(Q2(t) + Z2(t) + Q3(t) + Z3,2(t))dT1,2(t) = 0. (16)

3. Results

Let us recall that a queuing network is said to be stable if its corresponding Markov process
X is positive Harris recurrent, i.e. it has a unique invariant probability measure [16,30]. For
instance, a Markov chain where the chain returns to a particular part of the state space an
unbounded number of times is positive Harris recurrent. Harris chains are regenerative
processes [16,30].

Lemma 1 ([16]). For almost all sample paths, any sequence of initial states {xn}n>1 ⊂ X with
limn→∞ |xn| = ∞, there exists a sub-sequence {xnr}r>1 ⊆ {xn}n>1 with limr→∞ |xnr | = ∞,
such that

lim
r→∞

1
|xnr |

Xxnr (0) .
= X(0) (17)

and the following limit exists uniformly on compact sets:

lim
r→∞

1
|xnr |

(Xxnr (|xnr |t), Dxnr (|xnr |t), Txnr (|xnr |t), Yxnr (|xnr |t))
.
= (X(t), D(t), T(t), Y(t)),

(18)

where
X(t) =

(
Q(t), Z(t), U(t), V(t)

)
. (19)
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Definition 1 ([28,31,32]). The fluid limit model (X, D, T, Y) associated to the Double-X model,
with X = (Q, Z, U, V), is stable if there exists t1 > 0 (depending on the arrival and service rates
only) such that if |Q(0)|+ |U(0)|+ |V(0)| = 1. Then, the following holds:

Q(t) = 0 ∀ t > t1. (20)

3.1. The Fluid Limit Model

The following equations are satisfied for any t ≥ 0, k = 1, 2, 3, (1, 2), (2, 1), (2, 3), (3, 2)
and j = 1, 2, 3, (1, 2), (2, 1), (2, 3), (3, 2). By using the (functional) Strong Law of Large
Numbers for the renewal processes, we deduce the following Lemma 4.2 in [28] that the
following (u.o.c) limits hold with probability 1 (w.p.1) as r → ∞:

Exnr
j (|xnr |t)
|xnr |

→ λj(t−U j(0))+,

Sxnr
k (|xnr |t)
|xnr |

→ µk(t−Vk(0))
+,

Dxnr
k (|xnr |t)
|xnr |

→ Dk(t).

From Equation (3), we obtain the following:

Dk(t) = µk(Tk(t)−Vk(0)). (21)

Because Zx
k (t) ≤ 1 for all x, t and k, where Zk(t) ∈ {0, 1}, then as r → ∞, the number

of Class-k customers that are being served at time t goes to zero.

Zk(t) = lim
r→∞

(
Zxnr

k (|xnr |t)
)

|xnr |
= 0. (22)

We obtain equalities (21) and (22), which are used to deduce the fluid model
Equations (23)–(25) and (31)–(36) from Equations (4)–(6) and (12)–(16) above:

Q1(t) = Q1(0) + λ1(t−U1(0))− (D1(t) + D1,2(t))

= Q1(0) + λ1(t−U1(0))− (µ1(T1(t)−V1(0)) + µ1,2(T1,2(t)−V1,2(0))).
(23)

Q2(t) = Q2(0) + λ2(t−U2(0))− (D2(t) + D2,1(t) + D2,3(t)),

= Q2(0) + λ2
(
t−U2(0)

)
−
(
µ2(T2(t)−V2(0)) + µ2,1(T2,1(t)−V2,1(0))

+ µ2,3(T2,3(t)−V2,3(0))
)
.

(24)

Q3(t) = Q3(0) + λ3(t−U3(0))− (D3(t) + D3,2(t)),

= Q3(0) + λ3(t−U3(0))− (µ3(T3(t)−V3(0)) + µ3,2(T3,2(t)−V3,2(0))).
(25)

It follows that Equations (26)–(30) can be obtained from Equations (7)–(11) above,
respectively.

(T1(t) + T2,1(t)) + Y1(t) = (T2(t) + T1,2(t) + T3,2(t)) + Y2(t)

= (T3(t) + T2,3(t)) + Y3(t) = t.
(26)
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∫ ∞

0
Qj(t)dY j(t) = 0, j = 1, 2, 3. (27)∫ ∞

0
Q2(t)dY1(t) = 0. (28)∫ ∞

0
(Q1(t) + Q3(t))dY2(t) = 0. (29)∫ ∞

0
Q2(t)dY3(t) = 0. (30)∫ ∞

0
Q1(t)dT2,1(t) = 0. (31)∫ ∞

0
Q3(t)dT2,3(t) = 0. (32)∫ ∞

0
Q2(t)dT1,2(t) = 0. (33)∫ ∞

0
Q2(t)dT3,2(t) = 0. (34)

Phase 1 (2 > 1 > 3): ∫ ∞

0
(Q2(t) + Q1(t))dT3,2(t) = 0. (35)

Phase 2 (2 > 3 > 1): ∫ ∞

0
(Q2(t) + Q3(t))dT1,2(t) = 0. (36)

The residual life process associated with the delayed renewal process is given by the
following:

U(t) = (U(0)− t)+, V(t) = (V(0)− t)+. (37)

For any 0 ≤ s ≤ t, the following holds:

0 ≤ Tk(t + s)− Tk(s) ≤ t. (38)

Without any loss of generality, one may assume that U(0) = V(0) = 0. By (37), this
leads to U(t) = V(t) = 0 for all t > 0, which can be shortened as U = V = 0.

3.2. The Stability Analysis

In this section, we present a stability result for the Double-X model. We denote
r1,2 = µ2

µ(1,2)
, r2,1 = µ1

µ(2,1)
, r2,3 = µ3

µ(2,3)
and r3,2 = µ2

µ(3,2)
, all in the interval (0, ∞).

Let conditions (1) and (2) hold and assume that either one of the assumptionsH1,H2
takes place (Table 2).

Table 2. Stability conditions.

H1 H2

r1,2, r2,1, r2,3, r3,2 > 1 r1,2, r2,1, r2,3, r3,2 < 1

r2,1r1,2, r1,2r3,2, r2,3r3,2 > 1 r2,1r1,2, r1,2r3,2, r2,3r3,2 < 1

r1,2r3,2r2,3, r2,1r2,3r3,2, r1,2r2,1r2,3 > 1 r1,2r3,2r2,3, r1,2r2,1r2,3, r2,1r2,3r3,2 < 1
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Then, the Double-X model is stable, provided that the following six conditions are
satisfied: 

(A1) λ1 − µ1 +
λ2 − µ2

r1,2
< 0,

(A2) λ2 − µ2 +
λ1 − µ1

r2,1
+

λ3 − µ3

r2,3
< 0,

(A3) λ3 − µ3 +
λ2 − µ2

r3,2
< 0,

(A4)
λ1 − µ1

r2,1
+

λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r1,2r3,2r2,3
< 0,

(A5)
λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r2,3
+

λ1 − µ1

r2,3r3,2r2,1
< 0,

(A6)
λ1 − µ1

r2,1
+

λ2 − µ2

r2,1r3,2
+

λ3 − µ3

r2,3
< 0.

(39)

Remark 1. AssumptionH1 corresponds to the situation in which customers are served slower at a
changed buffer, while assumptionH2 reflects just the opposite situation.

The detailed proof of the above-mentioned result is placed in the Appendix A.

4. Numerical Simulations

The data for the illustrative example were collected on 27 June 2017 (9:00 a.m.–12:00
p.m. (noon)), from the Agricultural Development Bank, Juapong branch, Ghana. The mean
arrival rates and the mean service rates are calculated from the collected data, and the
subsequent results are used to measure the performance of the system.

Table 3 shows the number of customers served within a given time interval. As shown
in Table 3, we recorded 47 exogenous customers, with 6 customers moving from Buffer-1
to Buffer-2 for service, indicating that 41 customers stayed in Buffer-1 for service. The total
time for service for customers in Buffer-1 is 177 min.

Table 3. Queue-1 (time in minutes).

E1(t) D1(t) Z1(t) D1,2(t) Z1,2(t) T1(t) T2,1(t)

47 41 41 6 6 152 25

Table 4 shows the mean arrival rate for Buffer-1. According to Table 4, the highest
number of customers (16) arrived within the time interval 9:30–10:00 a.m. and the lowest
number of customers (4) arrived within the time interval 11:30 a.m.–12:00 p.m. The mean
arrival rate for Buffer-1 is λ1 = 1.57

6 ≈ 0.26. The service rate of customers served in Buffer-1
is given by µ1 = 1

Eη1
, where η1 is the expectation of the service times. Eη1 = 151.71

41 ≈ 3.70.

The service rate for Buffer-1 is µ1 = 1
3.70 ≈ 0.27. The service rate for Buffer-2 customers

served in Buffer-1 is given by Eη2,1 = 24.79
7 ≈ 3.54 and µ2,1 = 1

3.54 ≈ 0.28.
Table 5 shows that 37 out of 49 exogenous customers who arrived within the given

time slot were served in their rightful buffer, whereas 7 customers moved from Buffer-2 to
Buffer-1 for service and 5 customers moved from Buffer-2 to Buffer-3 for service. The total
service time spent by customers in Buffer-2 is 174 min.

The mean arrival rate for Buffer-2 is shown in Table 6. According to Table 6, the
highest number of customers (17) arrived within the time interval 9:00–9:30 a.m. and the
lowest number of customers (2) arrived within the time interval 11:30 a.m.–12:00 p.m. The
mean arrival rate for Buffer-2 is λ2 = 1.63

6 ≈ 0.27. The service rate of customers served in
Buffer-2 is given by µ2 = 1

3.76 ≈ 0.28. The service rate for Buffer-1 customers served in
Buffer-2 is given by Eη1,2 = 18.64

6 ≈ 3.11 and µ1,2 = 1
3.11 ≈ 0.32. The service rate for Buffer-3

customers served in Buffer-2 is given by Eη3,2 = 16.35
6 ≈ 2.73 and µ3,2 = 1

2.73 ≈ 0.37.
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Table 4. The mean arrival rate of Buffer-1.

Time Interval (a.m.) Customers’ Number Inter-Arrival Rate

9:00–9:30 7 0.23

9:30–10:00 16 0.53

10:00–10:30 5 0.17

10:30–11:00 8 0.27

11:00–11:30 7 0.23

11:30–12:00 4 0.13

Total 47 1.57

Table 5. Queue-2 (Time in minutes).

E2(t) D2(t) Z2(t) D2,1(t) Z2,1(t) D2,3(t) Z2,3(t) T2(t) T1,2(t) T3,2(t)

49 37 37 7 7 5 5 139 19 16

Table 6. The mean arrival rate of Buffer-2.

Time Interval (a.m.) Customers’ Number Inter-Arrival Rate

9:00–9:30 17 0.57

9:30–10:00 11 0.37

10:00–10:30 6 0.20

10:30–11:00 7 0.23

11:00–11:30 6 0.20

11:30–12:00 2 0.07

Total 49 1.63

As shown in Table 7, we recorded 35 exogenous customers within the given time slot,
with 6 customers joining Buffer-3 for service. The total service time recorded in Buffer-3 is
175 min.

Table 8 shows the mean arrival rate for Buffer-3. According to Table 8, the highest
number of customers (12) arrived within the time interval 9:30–10:00 a.m. The mean arrival
rate for Buffer-3 is λ3 = 1.17

6 ≈ 0.19. The service rate of customers served in Buffer-3 is
µ3 = 1

4.52 = 0.22 ≈ 2. The service rate for Buffer-2 customers served in Buffer-3 is given by
Eη2,3 = 17.43

5 ≈ 3.54 and µ2,3 = 1
3.54 ≈ 0.28.

Table 7. Queue-3 (time in minutes).

E3(t) D3(t) Z3(t) D3,2(t) Z3,2(t) T3(t) T2,3(t)

35 29 29 6 6 158 17



Mathematics 2021, 9, 1957 12 of 21

Table 8. The mean arrival rate of Buffer-3.

Time Interval (a.m.) Customers’ Number Inter-Arrival Rate

9:00–9:30 7 0.23

9:30–10:00 12 0.53

10:00–10:30 3 0.17

10:30–11:00 7 0.27

11:00–11:30 3 0.23

11:30–12:00 3 0.13

Total 35 1.17

Figure 2 shows the movements of customers within the three buffers at a specific time
intervals. It can be deduced that more customers are served in Buffer-1 from 9:30–10:00 a.m.
and from 11:30 a.m.–12:00 p.m. In addition, more customers are also served in Buffer-2
from 9:00–9:30 a.m. followed by 10:00–10:30 a.m. Generally, Figure 2 depicts that Buffer-3
recorded the smallest number of customers served in the various specific time interval as
compared to Buffer-1 and Buffer-2.

Figure 2. Comparison between the numbers of customers served in each buffer.

Table 9 shows the comparison between the arrival and service rates among customers.
According to the results shown in Table 9, the mean arrival and service rates for Buffer-1
and Buffer-2 are approximately 3 minutes per customer, whereas the arrival and service
rate is about 3 min for Buffer-3. Customers spent 3 min with a server while being served at
a changed buffer; also, the average service time a customer spent in their rightful buffer is
less than the average service time that customers spent in a changed buffer. This, therefore,
supports Remark 1.

Table 9. Comparison of the arrival and service rates.

Queue Arrival Rates Service Rates

Buffer-1 λ1 = 0.26 µ1 = 0.27 µ2,1 = 0.28
Buffer-2 λ2 = 0.27 µ2 = 0.28 µ1,2 = 0.32 µ3,2 = 0.37
Buffer-3 λ3 = 0.19 µ3 = 0.22 µ2,3 = 0.28

Figures 3–5 show the relationship among customers arrival, service and departure
times for the three buffers.
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Figure 3. Arrival and departure times together with service times in Server-1 for Buffer-1. A point
with red shadow represents a customer moving from Buffer-2 to Buffer-1 for service.

Figure 4. Arrival and departure times together with service times in Server-2 for Buffer-2. A point
with green shadow represents a customer moving from Buffer-1 to Buffer-2 and a point with purple
shadow represents a customer moving from Buffer-3 to Buffer-2 for service.
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Figure 5. Arrival and departure times together with service times in Server-3 for Buffer-3. A point
with black shadow represents a customer moving from Buffer-2 to Buffer-3 for service.

In comparing the arrival and service rates, it is to be noted that the performance
measures from the study in Table 10 satisfy all the six stability conditions for the Double-X
model. This, therefore, indicates that the model is fit to make predictions of the customers’
arrival and service rate at the bank.

Table 10. Stability analysis on the data collected.

Sufficient Condition Stability

(A1) : λ1 − µ1 +
λ2−µ2

r1,2
= −0.01 < 0 Stable

(A2) : λ2 − µ2 +
λ1−µ1

r2,1
+ λ3−µ3

r2,3
= −0.02 < 0 Stable

(A3) : λ3 − µ3 +
λ2−µ2

r3,2
= −0.03 < 0 Stable

(A4) : λ1−µ1
r2,1

+ λ2−µ2
r1,2r3,2

+ λ3−µ3
r1,2r3,2r2,3

= −0.001 < 0 Stable

(A5) : λ2−µ2
r1,2r3,2

+ λ3−µ3
r2,3

+ λ1−µ1
r2,3r3,2r2,1

= −0.001 < 0 Stable

(A6) : λ1−µ1
r2,1

+ λ2−µ2
r2,1r3,2

+ λ3−µ3
r2,3

= −0.002 < 0 Stable

5. Conclusions

In this paper, we model a server–customer interaction occurring in the banking sector,
using a Double-X cascade network. In the model, each server has a renewal customer with
general i.i.d. inter-arrival times and general i.i.d. service times. The Double-X cascade
model contains three servers with three classes of customers awaiting in three buffers for
service. Server-1, when free, serves customers who desire services 1–4 waiting in the queue
of Buffer-2 to be served; Server-2, when free, serves customers in the queue of Buffer-1 and
Buffer-3, while Server-3, when free, serves customers who require services 5–9 in queue
of Buffer-2. The main component of the analysis is the finding of the Lyapunov function,
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which is used to characterize the positive recurrence of the basic Markov process describing
stochastic dynamics of the network [16].

We find a sufficient stability condition for the Double-X cascade network system, using
the fluid limit approach. Furthermore, we present an illustrative example describing the
real-world functioning of the banking system. The average time a customer spends in the
system with Server-j, j = 1, 2, 3 is determined to be 0.27, 0.28 and 0.22 h, respectively. Based
on our mathematical findings and observations made for the case study, we find adequate
arrival and service rates to meet customer demands, even in situations in which periods of
high demand arise during business hours.
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Appendix A

This Appendix contains proofs of the stability conditions shown in Equation (39). Let
us consider a fluid limit model (X, D, T, Y), where X = (Q, Z, U, V) satisfies (23)–(37), and
assume that |Q(0)| = 1. We introduce the following Lyapunov function:

f (t) =
Q1(t)

r2,1
+

Q2(t)
r1,2r3,2

+
Q3(t)

r2,3
, t > 0.

Then, Q and f have the same differentiability points. It follows from (23)–(25) that for
any regular point t of Q, the following holds:

Q̇1(t) = λ1 − (µ1Ṫ1(t) + µ1,2Ṫ1,2(t)), (A1)

Q̇2(t) = λ2 − (µ2Ṫ2(t) + µ2,1Ṫ2,1(t) + µ2,3Ṫ2,3(t)), (A2)

Q̇3(t) = λ3 − (µ3Ṫ3(t) + µ3,2Ṫ3,2(t)), (A3)

which altogether imply the following:

ḟ (t) =
λ1

r2,1
−
(

µ1

r2,1
Ṫ1(t) +

µ1,2

r2,1
Ṫ1,2(t)

)
+

λ2

r1,2r3,2
−
( µ2

r1,2r3,2
Ṫ2(t)

+
µ2,1

r1,2r3,2
Ṫ2,1(t) +

µ2,3

r1,2r3,2
Ṫ2,3(t)

)
+

λ3

r2,3
−
(

µ3

r2,3
Ṫ3(t) +

µ3,2

r2,3
Ṫ3,2(t)

)
.

(A4)

Let t > 0 be a differentiability point of f such that f (t) > 0. Then, Q1(t) >
0, Q2(t) > 0 or Q3(t) > 0. We show that in either case, ḟ (t) 6 −C, for a constant
C > 0. Then, f is non-increasing and f (t) = 0 for all t > f (0)

C .
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Because |Q(0)| = Q1(0) + Q2(0) + Q3(0) = 1 from Definition (1), we have Q(t) = 0
for all t > t1. This happens since the following is true:

f (0) =
Q1(0)

r2,1
+

Q2(0)
r1,2r3,2

+
Q3(0)

r2,3
6

1
r2,1

+
1

r1,2r3,2
+

1
r2,3

.

Then (20) will follow:

t1 =
1
C

(
1

r2,1
+

1
r1,2r3,2

+
1

r2,3

)
> 0.

Case 1:Assume that Q1(t) > 0 and Q2(t) = Q3(t) = 0. Then, by (26) and (27),
Ẏ1(t) = Ẏ2(t) = Ẏ3(t) = 0 and by (31) and (34), Ṫ2,1(t) = Ṫ3,2(t) = 0. We obtain the
following:

Ṫ1(t) + Ṫ2,1(t) + Ẏ1(t) = 1 =⇒ Ṫ1(t) = 1.

From Equations (A2) and (A3), Q2(t) = Q3(t) = 0, so t is a local minimum. As t
is a regular point, then by Fermat’s theorem on stationary points, Q̇2(t) = Q̇3(t) = 0.
Therefore, the following holds:

λ2 = (µ2Ṫ2(t) + µ2,1Ṫ2,1(t) + µ2,3Ṫ2,3(t))

= µ2Ṫ2(t) =⇒ Ṫ2(t) =
λ2

µ2
,

also from Equation (29). Further, we have from (26) the following:

Ṫ2(t) + Ṫ1,2(t) + Ṫ3,2(t) =1

=⇒ Ṫ1,2(t) =1− Ṫ2(t) = 1− λ2

µ2
.

Moreover, from (A3), Q̇3(t) = 0, therefore we have the following:

λ3 = µ3Ṫ3(t) + µ3,2Ṫ3,2(t).

Finally, we obtain the following:

ḟ (t) =
λ1

r2,1
−
(

µ1

r2,1
+

µ1,2

r2,1
(1− λ2

µ2
)

)
+

λ2

r1,2r3,2
−
(

µ2

r1,2r3,2
× λ2

µ2

)
,

=
λ1 − µ1

r2,1
− µ1,2

r2,1

(
µ2 − λ2

µ2

)
.

Since r1,2 = µ2
µ1,2

, this implies the following:

ḟ (t) =
1

r2,1

(
(λ1 − µ1) +

λ2 − µ2

r1,2

)
= −C1,

the constant

C1 = − 1
r2,1

(
(λ1 − µ1) +

λ2 − µ2

r1,2

)
being positive by condition (A1).
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Case 2: Assume that Q2(t) > 0 and Q1(t) = Q3(t) = 0. Then, by (26) and (27),
Ẏ2(t) = Ẏ1(t) = Ẏ3(t) = 0. Equations (33)–(36) give Ṫ1,2(t) = Ṫ3,2(t) = 0. As a result, we
obtain from (26) the following:

Ṫ2(t) + Ṫ1,2(t) + Ṫ3,2(t) + Ẏ(t) = 1

=⇒ Ṫ2(t) =1,

Ṫ1(t) + Ṫ2,1(t) = 1, (A5)

Ṫ3(t) + Ṫ2,3(t) = 1. (A6)

By Fermat’s theorem on stationary points, one sees from Equation (A1) and (A3) that
Q̇1(t) = Q̇3(t) = 0. Therefore, we have the following:

λ1 = µ1Ṫ1(t) =⇒ Ṫ1(t) =
λ1

µ1
,

λ3 = µ3Ṫ3(t) =⇒ Ṫ3(t) =
λ3

µ3
.

From (A5), we have the following:

Ṫ2,1(t) = 1− Ṫ1(t) =
(

1− λ1

µ1

)
,

while from (A6), we have the following:

Ṫ2,3(t) = 1− Ṫ3(t) =
(

1− λ3

µ3

)
,

which implies the following:

ḟ (t) =
1

r1,2r3,2

(
(λ2 − µ2) + (λ1 − µ1)

µ2,1

µ1
+ (λ3 − µ3)

µ2,3

µ3

)
.

Since r2,1 = µ1
µ2,1

and r2,3 = µ3
µ2,3

, this yields the following:

ḟ (t) =
1

r1,2r3,2

(
(λ2 − µ2) +

λ1 − µ1

r2,1
+

λ3 − µ3

r2,3

)
= −C2,

the constant

C2 = − 1
r1,2r3,2

(
(λ2 − µ2) +

λ1 − µ1

r2,1
+

λ3 − µ3

r2,3

)
being positive by condition (A2).

Case 3: Assume that Q3(t) > 0 and Q1(t) = Q2(t) = 0, then by (26), (27), (31) and
(32), Ẏ3(t) = Ẏ2(t) = Ẏ1(t) = Ṫ2,1(t) = Ṫ2,3(t) = 0. From Equation (26), we obtain the
following:

Ṫ3(t) + Ṫ2,3(t) + Ẏ3(t) = 1,

Ṫ3(t) = 1.
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From Equations (A1) and (A2), Q1(t) = Q2(t) = 0, so t is a local minimum. As t
is a regular point, then by Fermat’s theorem on stationary points, Q̇2(t) = Q̇1(t) = 0.
Therefore, we have the following:

λ1 = (µ1Ṫ1(t) + µ1,2Ṫ1,2(t)).

λ2 = (µ2Ṫ2(t) + µ2,1Ṫ2,1(t) + µ2,3Ṫ2,3(t))

= µ2Ṫ2(t),

Ṫ2(t) =
λ2

µ2
.

From (26), Ṫ2(t) + Ṫ1,2(t) + Ṫ3,2(t) = 1, which implies the following:

Ṫ3,2(t) =
(

1− λ2

µ2

)
,

and consequently the following:

ḟ (t) =
λ3 − µ3

r2,3
− 1

r2,3

(
µ2,3(1−

λ2

µ2
)

)
,

ḟ (t) =
1

r2,3

(
(λ3 − µ3) +

λ2 − µ2

r3,2

)
= −C3,

the constant

C3 = − 1
r2,3

(
(λ3 − µ3) +

λ2 − µ2

r3,2

)
being positive by condition (A3).

Case 4: Assume that Q1(t) > 0, Q2(t) = 0 and Q3(t) > 0. Then by (26), (27), (31)
and (32), Ẏ1(t) = Ẏ2(t) = Ẏ3(t) = Ṫ2,1(t) = Ṫ2,3(t) = 0, which gives the following:

Ṫ1(t) + Ṫ2,1(t) + Ẏ1(t) =1,

Ṫ3(t) + Ṫ2,3(t) + Ẏ3(t) =1,

Ṫ1(t) = Ṫ3(t) = 1.

Then, from Equation (A2), by Fermat’s theorem on stationary points, Q̇2(t) = 0. This
implies the following:

λ2 = µ2Ṫ2(t) + µ2,1Ṫ2,1(t) + µ2,3Ṫ2,3(t),

Ṫ2(t) =
λ2

µ2
.

Again from (26), we have the following:

Ṫ2(t) + Ṫ1,2(t) + Ṫ3,2(t) + Ẏ2(t) = 1.

From Phase 1:
Ṫ3,2(t) = 0 =⇒ Ṫ1,2(t) = 1− λ2

µ2
.

Additionally, from Phase 2 we have the following:

Ṫ1,2(t) = 0 =⇒ Ṫ3,2(t) = 1− λ2

µ2
,
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resulting in the following:

ḟ (t) =
λ1

r2,1
−
(

µ1

r2,1
+

µ1,2

r2,1
(1− λ2

µ2
)

)
+

λ2

r1,2r3,2
−
(

µ2

r1,2r3,2
× λ2

µ2

)
,

=
λ1 − µ1

r2,1
+

1
r2,1

(
λ2 − µ2

µ2
× µ1,2

µ2

)
,

=
λ1 − µ1

r2,1
+

λ2 − µ2

r2,1r1,2
= −C4.

where the constant

C4 = − 1
r2,1

(
λ1 − µ1 +

λ2 − µ2

r1,2

)
,

is positive by condition (A1).
Case 5: Assume that Q1(t) > 0, Q2(t) > 0 and Q3(t) = 0. Then, by (26), (27) and

(31), (33), (34), Ẏ1(t) = Ẏ2(t) = Ẏ3(t) = Ṫ2,1(t) = Ṫ1,2(t) = Ṫ3,2(t) = 0, resulting in

Ṫ1(t) = Ṫ2(t) = 1.

From (A3),

λ3 = µ3Ṫ3(t) + µ3,2Ṫ3,2 =⇒ Ṫ3(t) =
λ3

µ3
.

Moreover, from (26),

Ṫ3(t) + Ṫ2,3(t) + Ẏ3(t) = 1

Ṫ2,3(t) = 1− λ3

µ3
.

Using (A4), this implies the following:

ḟ (t) =
λ1

r2,1
−
(

µ1

r2,1

)
+

λ2

r1,2r3,2
−
(

µ2

r1,2r3,2
+

µ2,3

r1,2r3,2
(1− λ3

µ3
)

)
,

=
λ1 − µ1

r2,1
+

λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r1,2r3,2r2,3
,

=
λ1 − µ1

r2,1
+

λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r1,2r3,2r2,3
= −C5,

the constant

C5 = −
(

λ1 − µ1

r2,1
+

λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r1,2r3,2r2,3

)
,

being positive by condition (A4).
Case 6: For Q1(t) = 0, Q2(t) > 0 and Q3(t) > 0 Then, by (26), (27) and (32)–(34),

Ẏ1(t) = Ẏ2(t) = Ẏ3(t) = Ṫ2,3(t) = Ṫ1,2(t) = Ṫ3,2(t) = 0, resulting in

Ṫ2(t) = Ṫ3(t) = 1.

From (A1),

λ1 = µ1Ṫ1(t) + µ1,2Ṫ1,2 =⇒ Ṫ1(t) =
λ1

µ1
.
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Then Equation (26) gives us the following:

Ṫ1(t) + Ṫ2,1(t) + Ẏ1(t) = 1

Ṫ2,1(t) = 1− λ1

µ1
,

ḟ (t) =
λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r2,3
−
(

µ2,1

r1,2r3,2
(1− λ1

µ1
)

)
,

=
λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r2,3
+

λ1 − µ1

r2,3r3,2r2,1
,

=
λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r2,3
+

λ1 − µ1

r2,3r3,2r2,1
= −C6,

the constant

C6 = −
(

λ2 − µ2

r1,2r3,2
+

λ3 − µ3

r2,3
+

λ1 − µ1

r2,3r3,2r2,1

)
being positive by condition (A5).

Case 7: Assume that Q1(t) > 0, Q2(t) > 0 and Q3(t) > 0. Then, by (26), (27) and
(31)–(36), we have Ẏ1(t) = Ẏ2(t) = Ẏ3(t) = Ṫ1,2(t) = Ṫ2,1(t) = Ṫ2,3(t) = Ṫ3,2(t) = 0,
implying the following:

Ṫ1(t) = Ṫ2(t) = Ṫ3(t) = 1.

From (A1)–(A3), we see the following:

ḟ (t) =
λ1 − µ1

r2,1
+

λ2 − µ2

r2,1r3,2
+

λ3 − µ3

r2,3
= −C7,

the constant

C7 = −
(

λ1 − µ1

r2,1
+

λ2 − µ2

r2,1r3,2
+

λ3 − µ3

r2,3

)
being positive by condition (A6). Consequently, in either case, ḟ (t) 6 −C < 0, where
C := min{C1, C2, C3, C4, C5, C6, C7}.
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