
Mathematical and Computer Modelling 52 (2010) 37–54

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

The global properties of an age-dependent SI model involving
pathogenic virus release and defence mechanisms for pests
Hong Zhang a,b,∗, Paul Georgescu c
a Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87 Umeå, Sweden
b Department of Mathematics, Jiangsu University, ZhenJiang, Jiangsu 212013, PR China
c Department of Mathematics, ‘‘Gh. Asachi’’ Technical University of Iaşi, Bd. Copou 11, 700506 Iaşi, Romania

a r t i c l e i n f o

Article history:
Received 19 July 2009
Received in revised form 21 December 2009
Accepted 21 December 2009

Keywords:
Pest management
Age-structured population model
Transport equation
Functional differential equations
Asymptotic analysis
Linearized stability

a b s t r a c t

Insect pests are common but undesirable elements in ecosystems and represent thorny
problems for most developing countries. To prevent pest outbreaks, growers often resort
to insect–pathogenic viruses rather than to pesticides which affect human health and
the environment. The purpose of this paper is to investigate a new age-structured pest
management model which describes the interaction between susceptible insect pests,
infected insect pests, pathogenic viruses and defence immunity mechanisms. A feature
of this model is that it accounts for the dependence of the amount of pathogenic viruses
released and of the efficiency of the defence mechanisms upon the so-called age of
infection. First, the asymptotic behavior of the system is established via a monotonicity
argument which makes use of several integral inequalities, being shown that the infection
ultimately dies out, while under certain circumstances the susceptible pests also become
extinct. By means of the Michailov criterion, one then analyzes the linearized stability of
the trivial equilibrium and of the semi-trivial infected pest-free equilibrium. In this regard,
it is observed that the defence mechanisms and maximal length of the infective period
play important roles in the dynamics of the system. Several pest controls strategies are
further investigated by means of numerical simulations, which show that when the dose
of pathogenic viruses released initially is larger than a certain amount the profile of the
response of defence mechanisms can be modified by changing this dose. Finally, the paper
is concluded with a discussion on the biological significance of the mathematical results
and framework.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Insect pests are common but undesirable elements in ecosystems and represent thorny problems for most developing
countries where pest outbreaks threaten food quality and food supply. Pest control strategies were described occasionally
in writings of the ancient Chinese, Sumerian, and Egyptian scholars. Predatory ants, for example, were used in China as early
as 1200 BC to protect citrus groves from caterpillars and wood boring beetles.
Nowadays, to prevent pest outbreaks growers often resort to pesticides, but their use may have unwanted consequences

including insect resistance, resurgence, outbreak of secondary pests, and the accumulation of pesticide residues affecting
human health and the environment. Generally, insects, like humans and other animals, can be infected by insect–pathogenic
organisms such as bacteria, viruses and fungi. Under appropriate conditions, like high humidity or high pest abundance,

∗ Corresponding author.
E-mail addresses: hongzhang@math.umu.se (H. Zhang), v.p.georgescu@gmail.com (P. Georgescu).

0895-7177/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2009.12.020

http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
mailto:hongzhang@math.umu.se
mailto:v.p.georgescu@gmail.com
http://dx.doi.org/10.1016/j.mcm.2009.12.020


38 H. Zhang, P. Georgescu / Mathematical and Computer Modelling 52 (2010) 37–54

these naturally occurring organisms may multiply to cause disease outbreaks or epizootics that can decimate an insect
population. As a result, a wise alternative to chemical control is microbial control which is, generally, man’s use of suitably
chosen living entomopathogenic organisms, referred as the microbial agents, to control another living organisms. Control
agents can be bacteria, fungi, viruses, nematodes and protozoa that either remove the harmful organisms or interfere
with their biological processes [1–8]. For example, the control of rabbit pests in Australia [9] by the viral disease called
‘‘myxomatosis’’ provides a spectacular example of a virus controlling pest.
With the development of biotechnology and the beginning of ecologically advisable policies for pest management,

microbial control policies have achieved immense importance in agriculture protection programs. A large number of
baculoviruses offer potential as microbial control agents of insects. Amongst all the viruses, the greatest microbial potential
is displayed by the Baculoviridae Nuclear Polyhedrosis Virus (NPV) and Granulo Virus (GV) [10]. The occurrence of many
different baculoviruses, each with sometimes very restricted but different host stages, and their great potential for the pest
control are well recorded. The use of NPVs [11] is growing gradually in agricultural management, because NPVs are often
host specific, cause autoinfection and are usually fatal.
In India, Spodoptera litura has defoliated many economically important crops including cole, cotton, and soybean.

Synthetic pesticides have been used against this pest, butmany farmers have found that heavy doses of pesticides cause pest
resistance, resurgence, and food contamination. Recently, some entomologists have tried to use the Spodoptera polyhedrosis
virus (SlNPV) to control the fourth instar larvae which is the most damaging stage of the pest. For example, some 2006 field
surveys were outlined by Prasad and Wadhwani [12] as follows. The viral preparation contained 2× 109 polyhedra per ml.
Considering this as stock solution, four different dilutions (viz. 0.1, 0.25, 0.5 and 0.75ml) were prepared and fed to the target
pest population—the fourth instar larvae of S. litura by leaf-dipmethod, Castor leaf of 6 cm diameter was dipped in prepared
concentrations for 1min and shade-dried for 30min. Then leaf discswere placed in a slanting position in separate containers
so that the larvae can feed on both the surfaces of the leaf. Ten fourth instar larvae were released in each container with
three replicas and one control. Consequently, the histomicrograph clearly revealed that various midgut cells, fat bodies,
connective tissues and integument either lost their identity or became highly disorganized. Furthermore, they found out
that at the maximal period of treatment, i.e. 96 h, the mortality increased from 5.43% to 78.91%, from the lowest dose of
0.1 ml to the highest applied dose of 0.75 ml. Above all, the overall destruction of tissues led to liquefied contents inside the
body cavity, giving the infected insect a turgid appearance. The infected larval bodies were laden with polyhedral occlusion
bodies (POBs) which contain viral particles. Even a slight damage or disturbance of the integument released liquefied body
fluid containing large number of POBs. This infected fluid further spread infection when healthy larvae came in contact with
the fluid, causing autoinfection.
On the other hand, as part of a survival strategy, more than 645 species of insect species have perfected numerous

effective resistance and defence mechanisms to most of the conventional chemical insecticides (see Fig. 1). Similarly, can
an insect species that is susceptible to a pathogen become resistant to more microorganisms? In previous mathematical
works mentioned above, many authors neglected insect defence during the use of pathogenic viruses since the precise
resistance mechanism remained unknown. From a biological viewpoint, the host specificity which has been observed in
many insect pathogens demonstrates that insect species are naturally resistant to these microorganisms. For example,
Pieris brassicae, Heliothis zea, Plodia interpunctella and Bombyx mori have shown different degrees of resistance to insect
viruses [13] (see Table 1). Compared to vertebrates, insects do not possess the ability to produce antibodies and, further,
not produce alpha/beta interferons in response to viral infections. Nevertheless, they are capable of ‘‘immune’’reactions
which are characterized by non-specific defence mechanisms consisting of structural and passive barriers like cuticle, gut
physicochemical properties and peritrophic membrane, as well as specific defence mechanisms including phagocytosis,
nodulation and encapsulation [14]. The above survey briefly describes the insect-virus-defencemechanism from a biological
viewpoint. In the following some of its mathematical aspects will be described.

2. The mathematical model: Previous work and motivation

At present, there is a vast amount of literature on the applications of entomopathogens to suppress pests [15,9,
16,17,7,18]. Recently, many scholars have attempted to formulate and analyze deterministic models of pest–pathogen
dynamics [19–26,37].
In their 1927–1933 series of papers, Kermack and McKendrick [27–29] studied the following SI model with general

infectivity
S ′(t) = S(t)

∫
∞

0
A(τ )S ′(τ )dτ

I(t) = −
∫
∞

0

A(τ )
A(0)

S ′(t − τ)dτ ,
(1)

where S(t) and I(t) denote the amount of susceptible and infective pests at time t and A(τ ) represents the expected
infectivity of an individual that became infected τ units of time ago. See also Diekmann, Heesterbeek and Metz [30] for
an overview of the results presented in [27–29]. Kermack and McKendrick’s model is often simplified in the form{

S ′ = −ρSI,
I ′ = ρSI − wI, (2)
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Fig. 1. Development of resistance by arthropods to insecticides.

Table 1
Insects showing resistance to insect–pathogenic viruses.

Species Insect–pathogenic viruses

Pieris brassicae GV
Heliothis zea NPV
Plodia interpunctella NPV
Bombyx mori NPV

which is obtained from (1) for A(τ ) = ρe−wτ , wherew represents the total removal rate of infectives. Particularly, in 1980,
Goh [25] studied (2) numerically, from the viewpoint of attempting to control a given pest population.
To adequately incorporate the effects of the pathogens on the pest population, in 1981, Anderson and May [20] used the

systemI
′
= ρPS − (θ + b+ µ)I,
H ′ = rH − θ I,
P ′ = A− ωI − (γ + ρH)P,

(3)

where H represents the total host population (S + I), P the pathogen population, ω the rate at which infective individuals
produce pathogens, γ the mortality rate of the host population in the infective stage, A the release rate of the pathogen, b
the death rate of the host if no pathogens are present,µ the host recovery rate and θ the pathogen-induced death rate. They
showed that if the release rate A exceeded a critical level, the host (pest) population would decrease to zero.
Motivated by Anderson and May’s modelling ideas, Brown [23] proposed and investigated a modified SIRS model

developed as a framework for the study of epizootiological dynamics in an insect–pathogen system. From a linearized
stability analysis, it has been shown that the system with one immune and one susceptible host class can exhibit stable,
periodic or unstable behavior depending on model parameters. Furthermore, in 1997, Moerbeek and Van Den Bosch [26]
developed stage-structuredmodels of insect–pathogen interactions incorporating a constantmaturation timewhich, from a
mathematical point of view, introduces a delay in their systems. They pointed out that the interplay between insect-density
dependence and stage-specific susceptibility has important consequences for the dynamics of insect–pathogen systems.
Following this line of development, in 2008, Zhang et al. [31] dealtwith an impulsively controlled epidemicmodelwith delay,
stage structure and a general form of the incidence rate. In [31], the pest population was subdivided into three subgroups:
pest eggs, susceptible pests and infective pests, while being assumed that infective pests do not attack crops. The main
results of [31] indicated that besides the release amount of infective pests, the incidence rate, time delay and impulsive
period can have a great influence on the dynamics of the system. However, according to the comments made in Section 1,
none of the models mentioned in Section 2 can completely characterize the interaction between insect pests, pathogenic
viruses and the defence mechanism. More precisely, they cannot be employed to obtain precise quantitative assessments
of the impact of the pathogenic virus density and infection age upon the spread of the infection and immunity in hosts for
insect pest management.
Motivated by these comments and references, the aim of this paper is to construct a new model of pest management

which involves the release of pathogenic viruses and defence immunity, and to investigate its dynamics. The model divides
the pest population into a susceptible and an infective class, including also a class of pathogenic viruses as well as keeping
track of the immune response, and uses an additional variable to describe the age of infection. Consequently, the model
involves a transport type partial differential equation for infected hosts. The main results are obtained using by means of
the linearized stability analysis of a functional differential equationwhich is equivalent to the original age-structuredmodel.
The use ofMichailov criterion reveals the relationship between age structure, immune response and stability, specifically the
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Fig. 2. Flow chart of infection spread via pathogenic viruses with defence immunity (S: susceptible insect pest population; I: infected insect pest
population; Cp: pathogenic viruses; D: resistance mechanisms).

fact that themaximal length of the infective period and several coefficients characterizing defence immunity play important
roles in the dynamics of the system.
The rest of the paper is organized as follows. Themodel to be studied is proposed in Section 3 togetherwith its underlying

biological assumptions, in a form which involves the use of a nonlinear partial differential equation of transport type. This
model is then reformulated as a lower-dimensional functional differential equation. The influence of the viral particle self-
regulation, age structure and immune response on the long term dynamics of the system is explored in Section 4. Several
numerical simulations are performed in Section 5, a brief discussion of the biological significance of themathematical results
being given in Section 6.

3. Infection-age-structured model

As previously mentioned, we attempt to introduce a pest-virus-immune response model based on those of Goh [25],
Anderson and May [20] and Anderson [21], which describes the dynamics of a host population that is infected by a
disease possessing a free-living stage in the environment. Like thosemodels, it includes time-dependent state variables that
represent the densities of susceptible hosts S(t), of infected hosts I(t, a) and of the pathogenic viruses Cp(t) in infected host
organisms, the variable a describing the so-called age of infection. Also, the immune response denoted byD(t) includes non-
specific and specific defence mechanisms. The general scheme of the transitions between different pest states is presented
in Fig. 2.
Using Fig. 2 as a guide for different interactions we can formulate the governing equations as follows

S ′(t) = −
α1Cp(t)S(t)

1+ k1S(t)+ k2Cp(t)
, t > 0

∂ I(t, a)
∂t

+
∂ I(t, a)
∂a

= −dI(a)I(t, a), t, a > 0

C ′p(t) = −dCpCp(t)+
∫ h

0
β(a)I(t, a)da−

α2Cp(t)S(t)
1+ k1S(t)+ k2Cp(t)

−
α3Cp(t)D(t)

1+ k3D(t)+ k4Cp(t)
, t, a > 0

D′(t) = κS(t)− dDD(t)+
∫ h

0
γ (a)I(t, a)da−

α4Cp(t)D(t)
1+ k3D(t)+ k4Cp(t)

, t, a > 0

(4)

with the following boundary condition

I(t, 0) =
α1Cp(t)S(t)

1+ k1S(t)+ k2Cp(t)
, t > 0 (5)

and initial conditions

S(0) = S0, Cp(0) = Cp0 , D(0) = D0 (6)

I(0, a) = I0(a), a ≥ 0. (7)

Here, dCp , dI(a) and dD represent the fractions removed per unit of time of the total amount of pathogenic viruses, infected
hosts of age of infection a and resistance mechanisms, respectively. While the precise infection and defence mechanisms
remain unknown, we are motivated to use the particular equations mentioned above by the specific forms of the functional
responses of population dynamics. In this regard, we assume that α1 is the fraction of susceptible pests converted to infected
pests per viral cell and unit of time, α2 and α3 represent the fraction of pathogenic viruses consumed per susceptible pest
and, respectively, per immune response at time t , k1 and k3 are nonnegative constants describing the effect of handling time
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of the susceptible pest on the incidence rate of infection and, respectively, on the immune rate, k2 and k4 are also nonnegative
constants representing the magnitude of the interference of pathogen cells in host organisms under infection and defence
mechanisms, respectively.
Note that the infection rate

−
α1Cp(t)S(t)

1+ k1S(t)+ k2Cp(t)
,

degenerates into the bilinear incidence rate if k1 = k2 = 0, and also degenerates into saturated incidence rates if k1 = 0 or
k2 = 0. Similar things happen to the infection rate

−
α3Cp(t)D(t)

1+ k3D(t)+ k4Cp(t)
.

The following assumptions are also made to derive the mathematical model above:

(A1) Susceptible hosts, apart from their initial amounts, are not capable of reproduce once they are exposed to pathogenic
organisms. No natural mortality of susceptible hosts is considered.

(A2) Infected hosts are parameterized by their age of infection, i.e., the time elapsed since the pest became infected, which
is denoted by a. Pests of different age of infection may release pathogenic viruses at different rates.

(A3) Pathogenic viruses are degraded at a rate proportionate to their amount. Moreover, it is acceptable to consider
independent rates for viral particles consumed for infection of pests and for viral particles degraded by defence
mechanismsdepending on the infection age a.

(A4) The constants αi (i = 1, 2), dCp as well as dD are all positive. The infected hosts mortality function dI is dependent on
infection age a, continuous, nonnegative and satisfies lima→h−

∫ a
0 dI(s)ds = +∞ for some h > 0, which is understood

as being the maximal age of infection. New pathogenic viruses are produced by infected host only in the bounded
interval of ages of infection [0, h), which leads to suppβ(·) ⊂ [0, h), where β(a) is the release rate of pathogenic
viruses for an infected host of infection age a, and I(t, a) = 0 for a ≥ h.

(A5) The function γ , which gives the production rate of defence immunity mechanisms by an infected host is continuous,
nonnegative and suppγ (·) ⊂ [0, h). In other words, the effective defence mechanisms are observed in bodies of living
infected hosts. On the other hand, excluding the effect of viral particles, the susceptible hosts are still capable of non-
specific defence immunity. It is then safe to assume that the immune mechanisms also grow at a source rate κS.

(A6) Infective pests cannot attack crops.

Also, the initial data S0, Cp0 , D0, I0(·) are assumed to be nonnegative.

Remark 3.1. In view of the assumption that [0, h) is the maximal interval of infection age, one notes that the reasonable
domain of function dI is the same interval. This implies that infected hosts die before reaching the maximal infection age h.

Note also that the exponential s(a) = e−
∫ a
0 dI (s)ds gives the fraction of a cohort infected at the same time which survives

until their infection age is a, so it may be called a survival function. In Anderson and May’s terms (see [32]), our mortality
function is a modified type I mortality, in the sense that it is not assumed that dI is 0 until the infection age h is reached.

Remark 3.2. The quantities S0 and Cp0 represent the initial amount of target pests and, respectively, viral particles released
by farmers. Also, D0 describes the initial magnitude of the immune response, while I0 represents the initial age distribution
of the infected population.

To analyze the nonlinear PDE model introduced above, we first derive from (4), (5) and (7) that I(t, a) is given by

I(t, a) =


α1Cp(t − a)S(t − a)

1+ k1S(t − a)+ k2Cp(t − a)
e−

∫ a
0 dI (ξ)dξ , for t > a ≥ 0;

I0(a− t)e−
∫ a
a−t dI (ξ)dξ , for a ≥ t > 0.

(8)

From the basic existence and uniqueness theory for functional differential equations (see [33,34]), it follows that the
integrodifferential system consisting in the first, third and fourth equation of (4) in which I(t, a) is substituted with its
expression given in (8) has a unique global solution. In the following, we shall be concerned with the positivity and the
asymptotic behavior of this solution.

4. The dynamical behavior of the pest–pathogen model

The key questions are, of course, whether or not the size of the susceptible pest class will be stabilized under a certain
economically significant threshold level andwhether or not the pathogenic viruses and resistancemechanismswill be active
in the long term. In other words, we should determine the asymptotic behavior of the system for t →∞, which is what we
attempt to do throughout this section.
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4.1. Asymptotic behavior

Define the total size of the pest population at time t as

N(t) .= S(t)+ NI(t),

where the total size NI(t) of the infected pest population at time t is given by

NI(t) =
∫ h

0
I(t, a)da.

The following theorem establishes the positivity of the solutions of (4), affirming also that the infection is removed in the
long term.

Theorem 4.1. Assume that all initial conditions are nonnegative. Then

(i) S, I, Cp, D, NI and N are nonnegative.
(ii) N and S are nonincreasing.
(iii) N, S, NI and

∫ t
0

(∫ h
0 dI(a)I(s, a)da

)
ds are bounded.

(iv)
∫ t
0 NI(s)ds is bounded and NI tends to 0 as t →∞.

Proof. First, integrating the first equation of (4) on [0, t], we get

S(t) = S0e
−α1

∫ t
0

Cp(s)
1+k1S(s)+k2Cp(s)

ds
, (9)

which implies that S(t) is nonnegative since S0 is nonnegative.
It is seen from (8) that I is nonnegative, which implies that NI and N are nonnegative. Also,

d
dt

[
Cp(t)e

∫ t
0

(
dCp+

α2S(s)
1+k1S(s)+k2Cp(s)

+
α3D(s)

1+k3D(s)+k4Cp(s)

)
ds
]
≥ 0

and consequently t → Cp(t)e
∫ t
0

(
dCp+

α2S(s)
1+k1S(s)+k2Cp(s)

+
α3D(s)

1+k3D(s)+k4Cp(s)

)
ds
is increasing, which implies that Cp is nonnegative on its

interval of existence. In addition, it follows from the nonnegativity property of S and CP that S is nonincreasing. Clearly,

d
dt

[
D(t)e

∫ t
0

(
dD+

α4Cp(s)
1+k3D(s)+k4Cp(s)

)
ds
]
≥ 0,

which implies that D is nonnegative. One notes that

N ′I (t) =
d
dt

(∫ h

0
I(t, a)da

)
= −

∫ h

0
dI(a)I(t, a)da−

∫ h

0

∂ I(t, a)
∂a

da

= −

∫ h

0
dI(a)I(t, a)da+

α1Cp(t)S(t)
1+ k1S(t)+ k2Cp(t)

= −

∫ h

0
dI(a)I(t, a)da− S ′(t). (10)

From (A4), the first equation of (4) and (10), we obtain that

N ′(t) = −
∫ h

0
dI(a)I(t, a)da ≤ 0, (11)

which implies that N is nonincreasing. Integrating both sides of (11) on [0, t], we then derive

S(t)+ NI(t)+
∫ t

0

(∫ h

0
dI(a)I(s, a)da

)
ds = S0 + NI(0), (12)

from which the boundedness of S, NI , N and of∫ t

0

(∫ h

0
dI(a)I(s, a)da

)
ds
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follows. To show that
∫ t
0 NI(s)ds is bounded, note first that∫ h−a

0
dI(ξ + a)e−

∫ a+ξ
a dI (τ )dτdξ =

∫ h−a

0
−
d
dξ

(
e−

∫ a+ξ
a dI (τ )dτ

)
dξ = 1. (13)

It then follows that∫ t

0

∫ h

0
I(s, a)dads =

∫ t

0

∫ h

0

(∫ h−a

0
dI(ξ + a)e−

∫ a+ξ
a dI (τ )dτ I(s, a)dξ

)
dads

=

∫ t

0

∫ h

0

(∫ h−ξ

0
dI(ξ + a)I(s+ ξ, a+ ξ)da

)
dξds.

With the change of variables given by a′ = a+ ξ , s′ = s+ ξ , one obtains that∫ t

0

∫ h

0
I(s, a)dads =

∫ t

0

∫ h

0

(∫ h

ξ

dI(a′)I(s+ ξ, a′)da′
)
dξds

=

∫ h

0

(∫ t+ξ

ξ

(∫ h

ξ

dI(a′)I(s′, a′)da′
)
ds′
)
dξ

≤ h
(∫ t+h

0

∫ h

0
dI(a′)I(s′, a′)da′ds′

)
.

Consequently,
∫ t
0 NI(s)ds is bounded. Also, since NI = N − S and N , S are nonincreasing, it follows that NI has a limit as

t →∞. Since
∫ t
0 NI(s)ds is bounded, it is then seen that NI tends to 0 as t →∞. This completes the proof. �

Naturally, as seen in the above result, the size of the susceptible pest population is expected to decrease, since there is
no source term for susceptibles in the first equation of (4). Also, a disease with finite maximal age of infection cannot persist
in a dwindling population.

Remark 4.2. The term
∫ t
0

(∫ h
0 dI(a)I(s, a)da

)
ds gives the total removed amount of infected hosts of all infection ages during

the time interval [0, t].

Next, to facilitate the further analysis of asymptotical behavior, we shall construct a connection between the release rate
of new pathogenic viruses, the degradation rate of infected pests and the production rate of resistance mechanisms for an
infected host of infection age a.

Lemma 4.3. Suppose that there exists a nonnegative integrable function g defined on [0, h) for the given h such that for every
a ∈ [0, h)

β(a) ≤
∫ h−a

0
g(ξ)dI(ξ + a)e−

∫ a+ξ
a dI (τ )dτdξ . (14)

Then ∫ t

0

∫ h

0
β(a)I(s, a)dads ≤

(∫ h

0
g(ξ)dξ

)(∫ t+h

0

∫ h

0
dI(a)I(s, a)dads

)
. (15)

The proof of this lemma is given in the Appendix.

Remark 4.4. Since
∫ h−a
0 dI(ξ + a)e−

∫ a+ξ
a dI (τ )dτdξ = 1, it follows that (14) is satisfied with g = C whenever β is bounded.

Consequently, we may call (14) in what follows a quasi-boundedness condition. We also note that a →
∫ h−a
0 g(ξ)dI(ξ +

a)e−
∫ a+ξ
a dI (τ )dτdξ is a boundedness function which depends on the (weighted) total net loss rate of infected pests in [a, h).

Consequently, themeaning of (14) is that the release rate of pathogen viruses produced by an infected host of age of infection
a is less than the weighted net loss rate of infected pests in [a, h).

We are now ready to complement Theorem 4.1 with a result which describes the asymptotic behavior of S and Cp
provided that the release rate of pathogenic viruses β is quasi-bounded. The quasi-boundedness assumption tames the
force of infection β and it is natural to expect that the susceptibles will survive in the long term.

Theorem 4.5. Assume that condition (14) holds. Then
(i) Cp and

∫ t
0 Cp(s)ds are bounded.

(ii) S tends to a positive limit S∗ as t →∞ provided that S0 > 0.
(iii) D is positive.
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Proof. By integrating the third equation of (4) from 0 to t , one obtains that

Cp(t)+ dCp

∫ t

0
Cp(s)ds+ α2

∫ t

0

Cp(s)S(s)
1+ k1S(s)+ k2Cp(s)

ds+ α3

∫ t

0

Cp(s)D(s)
1+ k3D(s)+ k4Cp(s)

ds

= Cp0 +
∫ t

0

∫ h

0
β(a)I(s, a)dads, (16)

which implies that∫ t

0
Cp(s)ds ≤

Cp0
dCp
+
1
dCp

∫ t

0

∫ h

0
β(a)I(s, a)dads. (17)

FromLemma4.3 and the boundedness of
∫ t
0

∫ h
0 dI(a)I(s, a)dads, it is then concluded that

∫ t
0 Cp(s)ds is bounded. Furthermore,

since S is decreasing and
∫ t
0

Cp(s)
1+k1S(s)+k2Cp(s)

ds is also bounded, it follows from (9) that S(t) tends to a positive constant S∗ as
t →∞. It is then observed that

D′(t) ≥ κS∗ +
∫ h

0
γ (a)I(t, a)da−

(
dD +

α4

k4

)
D(t)

>

∫ h

0
γ (a)I(t, a)da−

(
dD +

α4

k4

)
D(t). (18)

It is easily seen that

D(t) > D0e
−(dD+

α4
k4
)t
+ e−(dD+

α4
k4
)θ t
∫ t

0

∫ h

0
γ (a)I(t, a)da

for some θ ∈ (0, 1) and all t ∈ R+, from which we can obtain the positivity of D. �

Remark 4.6. In particular, it follows from Remark 4.4 and Theorem 4.5 that if β is bounded, then Cp and
∫ t
0 Cp(s)ds are

bounded, while S tends to a positive limit S∗ as t →∞ provided that S0 > 0.

Remark 4.7. From Theorem 4.5, it is seen that if the release rate of pathogenic viruses is exceeded by the weighted net loss
of infected pests, then the susceptible pest population tends to a positive equilibrium S∗. As seen from (9), the success of our
control strategy is then conditioned by the initial size of the susceptible pest class S0 and by the value of α1. In this regard,
it is observed that the immune response is uniformly persistent if the susceptibles also persist uniformly.

Let

Γ0(0)
.
= ν(0)+

α2

α1
NI(0)

and

ν(t) .= Cp(t)−
α3

α4
D(t).

Next we shall consider the case of dCp = κ ≡ 0. The following result provides an estimation of the auxiliary function ν as
t →∞.

Lemma 4.8. Assume that dCp = κ ≡ 0. Further, assume that

β(a) ≥
α2

α1
dI(a)+

α3

α4
γ (a) (19)

Then lim inft→∞ ν(t) ≥ Γ0(0).

Proof. Indeed, by the third and fourth equations of (4) and (10), one obtains that

ν(t)− ν(0) =
∫ t

0

∫ h

0

(
β(a)−

α2

α1
dI(a)−

α3

α4
γ (a)

)
I(s, a)dads+

α2

α1
(NI(0)− NI(t))+

α3

α4

∫ t

0
dDD(s)ds. (20)

Then

ν(t) = Γ0(0)−
α2

α1
NI(t)+

α3

α4

∫ t

0
dDD(s)ds+

∫ t

0

∫ h

0

(
β(a)−

α2

α1
dI(a)−

α3

α4
γ (a)

)
I(s, a)dads. (21)

It follows from Theorem 4.1 and (21) that lim inft→∞ ν(t) ≥ Γ0(0). This completes the proof. �
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Theorem 4.9. Assume that dCp = κ ≡ 0 and (19) holds, together with the following condition

Γ0(0) > 0. (22)

Then S(t) tends to 0 as t →∞.

Proof. It follows from Lemma 4.8, (19) and the nonnegativity of D(t) that S(t) tends to zero as t →∞. This completes the
proof. �

Remark 4.10. The product terms α2
α1
dI(a) and

α3
α4
γ (a) approximate the practical removal efficiency and practical immune

efficiency, respectively, when the infection age of infected pests is a. In this regard, Theorem 4.9 can be interpreted as if
there is no non-specific defence immunity, the pathogenic viruses are not naturally degraded and are produced fast enough,
compensating the loss due to the immune response and to the removal of infected pests, and the initial density of viral
particles is not less than a certain value depending on S0, D0 and NI(0), then the susceptible pest population S will become
extinct. Note that condition (19) is an ‘‘unboundedness’’ condition for β , as seen, for instance, from the fact that if (19) is
satisfied, then

∫ h
0 β(a)da = +∞.

4.2. Linearized stability

Let us first observe that the solutions of (4) satisfy the following integrodifferential system for t > h, as in this situation
t is larger than all possible infection ages and consequently I(t, a) is always given by the first half of (8)

S ′(t) = −
α1Cp(t)S(t)

1+ k1S(t)+ k2Cp(t)
,

C ′p(t) = −dCpCp(t)+
∫ h

0

A(a)Cp(t − a)S(t − a)
1+ k1S(t − a)+ k2Cp(t − a)

da−
α2Cp(t)S(t)

1+ k1S(t)+ k2Cp(t)
−

α3Cp(t)D(t)
1+ k3D(t)+ k4Cp(t)

,

D′(t) = κS(t)− dDD(t)+
∫ h

0

B(a)Cp(t − a)S(t − a)
1+ k1S(t − a)+ k2Cp(t − a)

da−
α4Cp(t)D(t)

1+ k3D(t)+ k4Cp(t)
.

(23)

Let us also denote

A(a) = α1β(a)e−
∫ a
0 dI (ξ)dξ

and

B(a) = α1γ (a)e−
∫ a
0 dI (ξ)dξ .

Weconsider two critical states: the pest-free state and the initial state, inwhich all pests are susceptible.Mathematically, we
obtain twoequilibria, i.e., a trivial equilibrium E0 = (0, 0, 0) and a semi-trivial infectedpest-free equilibrium E1 = (S, 0, κSdD ),

S = S0, although it should be noted that the semi-trivial equilibrium is not unique, as (S, 0, κSdD ) is an equilibrium for all S > 0.
Obviously, this precludes any kind of asymptotic stability for both E0 and E1.

Remark 4.11. κSdD describes the initial density of the non-specific defence immunity, which includes the inherent resistance
mechanisms of cuticle, peritrophic membrane, etc.

The characteristic equations at E0 and E1 have the following forms

det

(
λ 0 0
0 λ+ dCp 0
−κ 0 λ+ dD

)
= 0

and, respectively,

det


λ

α1S

1+ k1S
0

0 λ+ dCp +
α2S

1+ k1S
+

α3κS

dD + k3κS
−

S

1+ k1S

∫ h

0
A(a)e−λada 0

−κ
α4κS

dD + k3κS
−

S

1+ k1S

∫ h

0
B(a)e−λada λ+ dD


= 0.

For the trivial equilibrium E0, one obtains the non-positive eigenvalues 0,−dCp and−dD. For the infected pest-free equilib-
rium E1, one obtains the eigenvalues 0 and−dD, the remaining eigenvalues being determined by the roots of the following
equation

λ+ dCp +
α2S

1+ k1S
+

α3κS

dD + k3κS
−

S

1+ k1S

∫ h

0
A(a)e−λada = 0. (24)
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It is then seen that E0 has a two-dimensional stable manifold and a one-dimensional center manifold. Also, E1 has an at least
one-dimensional stable manifold and an at least one-dimensional center manifold, while in certain situations it also has a
one-dimensional unstable manifold. Further details regarding the stability of the equilibria are given below; unfortunately,
we have not been able to compute the center manifold neither for E0 nor for E1, due to the complexity of (23). See Khalil [35]
or Coddington and Levinson [36] for further details regarding center manifold theory for continuous-time systems.
The following preliminary result is taken into account by the argument principle known as Michailov criterion.

Lemma 4.12. Let

Φ(λ) = λ+ dCp +
α2S

1+ k1S
+

α3κS

dD + k3κS
−

S

1+ k1S

∫ h

0
A(a)e−λada

and let 1C Arg Φ(λ) denote the change of the argument of a curve Φ in C considering windings and orientation. Also, let 1 be
the variation of the argument for γ (µ)( noted by Argγ (µ)) as µ varies from 0 to∞ for a curve γ in C, i.e.,

1 = 1µ∈[0,∞)Argγ (µ). (25)

Suppose that

(a) (24) has no pure imaginary roots;
(b) there exists a positive constant k∗ such that |λ| < k∗ for all complex roots of (24) with Reλ > 0.

Then the number of roots in the right half-plane equals 12 −
1

π
.

The proof of this lemma is given in the Appendix. To apply Lemma 4.12, we shall prove that Φ(λ) satisfies conditions (a)
and (b) in Lemma 4.12.

Lemma 4.13. Suppose that either of the following conditions hold

(a) dCp +
α2S
1+k1S

+
α3κS
dD+k3κS

> S
1+k1S

∫ h
0 A(a)da;

(b) dCp +
α2S
1+k1S

+
α3κS
dD+k3κS

6=
S

1+k1S

∫ h
0 A(a)da and

S
1+k1S

∫ h
0 A(a)da < π .

ThenΦ has no zeros on the imaginary axis.

Proof. Indeed,Φ(iω) = 0 (ω 6= 0) if and only if ReΦ(iω) = 0 and ImΦ(iω) = 0, that is,
dCp +

α2S

1+ k1S
+

α3κS

dD + k3κS
−

S

1+ k1S

∫ h

0
A(a) cosωada = 0,

ω +
S

1+ k1S

∫ h

0
A(a) sinωada = 0.

Condition (a) guarantees that ReΦ(iω) > 0, so clearly Φ(iω) 6= 0. The second condition of condition (b) ensures that
Φ(0) 6= 0. It is clear that ImΦ(iω) > 0 for ω ∈ (0, π]. In addition, for ω > π , the second condition also guarantees that
ImΦ(iω) > 0. Hence, we have proved thatΦ(iω) 6= 0 for all ω > 0. As a result, we conclude thatΦ(λ) has no zeros on the
imaginary axis since zeros ofΦ(λ) come in complex conjugate pairs. This completes the proof. �

Lemma 4.14. There exists a positive constant k∗ such that |λ| < k∗ for all complex roots of (24) with Reλ > 0.

Proof. Letting λ = x+ yi(x > 0) in (24), we have
x+ dCp + α2

S

1+ k1S
+

α3κS

dD + k3κS
−

S

1+ k1S

∫ h

0

(
A(a)e−xa cos ay

)
da = 0,

y+
S

1+ k1S

∫ h

0

(
A(a)e−xa sin ay

)
da = 0.

Wemay choose k∗ as

k∗ = 2
(
dCp + α2S +

α3

k3
+ S

∫ h

0
A(a)da

)
,

which completes the proof. �

According to Lemmas 4.12–4.14, we may then deduce the following result.
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Table 2
The stable and unstable manifolds for the linearized system at the equilibrium (S > 0, 0,D > 0).

h Two-dimensional stable manifold One-dimensional unstable manifold

All (θ∗ ≥ θ2) Yes
All (θ1 ≥ θ2) Yes
h < 1

dI
ln
(

θ2
θ2−θ1

)
+ ε (θ2 > θ1) Yes

1
dI
ln
(

θ2
θ2−θ1

)
+ ε < h < 1

dI
ln( θ2

θ2−π
)+ ε Yes

(θ2 > max{θ1, π})

Theorem 4.15. If

dCp +
α2S

1+ k1S
+

α3κS

dD + k3κS
>

α1S

1+ k1S

∫ h

0
β(a)e−

∫ a
0 dI (ξ)dξda, (26)

then all possible roots of (24) lie in the left half-plane.

Remark 4.16. The sufficient condition (26) guarantees that all real parts of eigenvalues are negative. That is, (26) has a
stabilizing effect.

Theorem 4.17. If

dCp +
α2S

1+ k1S
+

α3κS

dD + k3κS
<

α1S

1+ k1S

∫ h

0
β(a)e−

∫ a
0 dI (ξ)dξda < π, (27)

then a single root of (24) lies in the right half-plane.

Proof. In fact, it follows from ArgΦ(0) = π that1 = −π
2 , and then N

∞
= 1. This completes the proof. �

Remark 4.18. The sufficient condition (27) guarantees that the infected pest-free equilibrium is unstable. That is, (27) has
a destabilizing effect.

The following result proves that, under some circumstances, the supremum infection age h and initial density of the inherent
non-specific defence immunity D .

=
κS
dD
play important roles in dynamics of structure.

Corollary 4.19. Suppose that the following parameters take the form

β(a) = β, dI(a) =
{
dI ∈ (0, 1], 0 < a ≤ h− ε;
+∞, a > h− ε

for some ε > 0. Then the trivial equilibrium (0, 0, 0) is unstable. For the linearized system at the equilibrium (S > 0, 0,D > 0),
the h-dependence of the stable and unstable manifolds is summarized in Table 2.
Here

θ1
.
= θ∗ +

α3κS

dD + k3κS
,

θ∗
.
= dCp +

α2S

1+ k1S

and

θ2
.
=

α1Sβ

(1+ k1S)dI
.

Corollary 4.20. Assume that

β(a) = β, dI(a) =
{
dI ∈ (0, 1], 0 < a ≤ h− ε;
+∞, a > h− ε.

Then the trivial equilibrium (0, 0, 0) is unstable. For the linearized system at the equilibrium (S > 0, 0,D > 0), the D-dependence
of the stable and unstable manifold is summarized in Table 3. Here, ε, θ1, θ2 and θ∗ are as defined in the corollary above.
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Table 3
The stable and unstable manifolds with respect to the linearizes system at the equilibrium (S > 0, 0,D > 0).

D Two-dimensional stable manifold One-dimensional unstable manifold

All (θ∗ ≥ θ2) Yes
All (θ∗ ≥ θ2(1− e−dI (h−ε))) Yes
D > θ2(1−e−dI (h−ε))−θ∗

k3
[
α3
k3
−(θ2(1−e−dI (h−ε))−θ∗)

] Yes(
α3
k3
> θ2(1− e−dI (h−ε))− θ∗

)
All
(
α3
k3
< θ2(1− e−dI (h−ε))− θ∗ < π − θ∗

)
Yes

D < θ2(1−e−dI (h−ε))−θ∗

k3
[
α3
k3
−(θ2(1−e−dI (h−ε))−θ∗)

] Yes(
α3
k3
> π − θ∗ > θ2(1− e−dI (h−ε))− θ∗

)
Table 4
Threshold values for the stable and unstable manifolds corresponding to the linearizes system at the equilibrium (S > 0, 0,D > 0).

α1 = α3 = 0.3, α2 = α4 = 0.5,
k1 = k3 = 0.2, k2 = k4 = 0.3,
dI (a) ≡ 1, a ∈ [0, h− ε](≡ ∞, a > h− ε),
β(a) ≡ 10/3, dCp = 0.1, dD = 1, γ = 0.01

Two-dimensional stable manifold One-dimensional unstable manifold

S = 50,D = 0.5 h < 0.803+ ε 0.803+ ε < h < 1.174+ ε
S = 100,D = 1 h < 0.852+ ε 0.852+ ε < h < 1.077+ ε
S = 200,D = 2 h < 0.937+ ε 0.937+ ε < h < 1.032+ ε
S = 300,D = 3 h < 1.007+ ε 1.007+ ε < h < 1.017+ ε

5. Pest control strategies

To confirm our mathematical findings and facilitate their interpretation, we proceed to investigate further by using
numerical simulations (see Table 4).
Let S(t) denote the number of pests in the larvae and adult stages. In each generation there is a burst of new larvae and

adults. This resets the initial amount S0 for each generation in an insect populationwith nonoverlapping generations. Hence,
the time variable is on a fast time scale. It is suitable for describing processes within a generation [25].
Suppose that pathogenic viruses are grown in laboratories and then released during the time interval (−h, 0]. Thismeans

that we can control the initial amount of viral particles Cp0 and thus Cp0 is a control parameter. Given a pest population S0,
we can then use Fig. 3 to compute the least value Cp0 so that the limit of S(t) as t → ∞ will be below a desirable level.
More precisely, setting the economic threshold (ET) = 20.51 and the control period (t = 9), from Fig. 7 (the magnified
view of Fig. 4(a)), we may choose the highest applied dose of 20 to control the amount of the susceptible pest population
below the given ET under the assumption that the period of treatment approximates 6.4. To make the management more
economically viable, it is recommended to use the dose of 15 to control the amount of the pest population below the given
ET under the assumption that the period of treatment approximates 7.5. On the other hand, Fig. 4(b) reveals that defence
mechanisms can prolong the life time of infected hosts (it is fated that infected hosts should die out).
From Figs. 5 and 6, one notes that the immune response is of no effect since the low dose effects induced by viral particles.

However, at a feasible dose of pathogenic viruses released initially, there are a ‘‘moderate’’ accumulation in pathogenic
viruses and an ‘‘abrupt’’ increase in defence mechanisms accumulation for a period of time, and subsequently a ‘‘moderate’’
dissipation in pathogenic viruses and an ‘‘abrupt’’ increase in the density of the immune response. On the other hand,
graphically, we find that the defence immunity is sensible to the change in the amount of pathogenic viruses in advance. In
this regard, Figs. 8–11 describe the dynamics of the linearized stability of the equilibrium E1 = (S, 0,D). From a viewpoint
of pest management, we should avoid such a situation by setting a series of feasible and economical control policies.

6. Concluding remarks

The present paper attempts to formulate and study an integrated pest management model which relies on the use of
pathogenic viruses as biocontrol agents. The pest population is divided into susceptibles and infectives, pathogenic viruses
and defence mechanisms being also employed. Our model keeps track of the so-called ‘‘age of infection’’, that is, the time
elapsed since the pest became infected. Consequently, a transport equation is used to model the dynamics of the infective
class. Through the use of some reasonable hypotheses, our mathematical model can be reduced to a three-dimensional
integrodifferential system. The asymptotic behavior of the system is then studied using monotonicity methods and integral
estimations. It is seen that the size of the susceptible pest population stabilizes in the long term at a certain positive level and
the total size of the infective class tends to 0, while if the decay rates of the pathogenic viruses and defence mechanisms are
null, the pathogenic viruses are released fast enough and the initial amounts of susceptible hosts, viral particles and defence
mechanisms satisfy some conditions, then the susceptible pests become extinct as well.
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Fig. 3. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 1.0001 and ε = 0.0001. The trajectories with the same initial values S(0) and D(0), and different initial values Cp(0).

a b

Fig. 4. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 1.0001 and ε = 0.0001. (a) The time series for S with the same initial values S(0) and D(0), and different initial values
Cp(0). (b) The time series for S with defence immunity (continuous curves) versus S without defence immunity (dotted curves) (α3 = α4 = 0, γ (a) ≡ 0).

Fig. 5. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 1.0001 and ε = 0.0001. The time series for Cp with the same initial values S(0) and D(0), and different initial values
Cp(0).
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Fig. 6. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 1.0001 and ε = 0.0001. The time series for D with the same initial values S(0) and D(0), and different initial values
Cp(0).

Fig. 7. The magnified view of Fig. 5(a).

Fig. 8. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 0.9 and ε = 0.0001. The trajectories with the same initial values S(0) and D(0), and different initial values Cp(0).
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Fig. 9. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 0.9 and ε = 0.0001. The time series for S with the same initial values S(0) and D(0), and different initial values Cp(0).

Fig. 10. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 0.9 and ε = 0.0001. The time series for Cp with the same initial values S(0) and D(0), and different initial values Cp(0).

Fig. 11. α1 = α3 = 0.3, α2 = α4 = 0.5, k1 = k3 = 0.2, k2 = k4 = 0.3, dI (a) ≡ 1, a ∈ (0, h − ε] (dI (a) ≡ +∞, a > h − ε), β(a) ≡ 10/3, γ (a) ≡ 1
3 ,

dCp = 0.1, dD = 1, κ = 0.01, h = 0.9 and ε = 0.0001. The time series for Dwith the same initial values S(0) and D(0), and different initial values Cp(0).
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Next, a linearized stability analysis is performed via the use of Michailov criterion and it is found out that the maximal
age of infection and inherent non-specific resistance mechanisms play important roles in the dynamics of the system.
Graphically, the ‘‘alert response’’ feature of the immune response is found via simulation of pathogenic viruses. Let us note
that the system hasmultiple equilibria and, in addition, their attracting properties strongly depend on the initial conditions.
Themathematical resultswhich are obtained in this papermay be useful formany agricultural researchers, as the feasible

use of viral pathogens in order to avoid or weaken the defence immunity of infected hosts is a viable method of pest control,
its characteristic feature being that it usually does not need to be reapplied each time a pest outbreak occurs.
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Appendix A. Proof of Lemma 4.3

Proof. According to (A5), (8) and (14), one obtains that∫ t

0

∫ h

0
β(a)I(s, a)dads ≤

∫ t

0

∫ h

0

∫ h−a

0
g(ξ)dI(ξ + a)e−

∫ a+ξ
a dI (τ )dτ I(s, a)dξdads

≤

∫ t

0

∫ h

0

∫ h−a

0
g(ξ)dI(ξ + a)I(s+ ξ, a+ ξ)dξdads. (28)

With the change of variables given by a′ = a+ ξ and s′ = s+ ξ , one obtains that∫ t

0

∫ h

0
β(a)I(s, a)dads ≤

∫ t

0

∫ h

0

∫ h−ξ

0
g(ξ)dI(ξ + a)I(s+ ξ, a+ ξ)dadξds

=

∫ h

0
g(ξ)

(∫ t

0

∫ h−ξ

0
dI(ξ + a)I(s+ ξ, a+ ξ)dads

)
dξ

=

∫ h

0
g(ξ)

(∫ t+ξ

ξ

∫ h

ξ

dI(a′)I(s′, a′)da′ds′
)
dξ

≤

(∫ h

0
g(ξ)dξ

)(∫ t+h

0

∫ h

0
dI(a)I(s, a)dads

)
and consequently (15) holds. This completes the proof. �

Appendix B. Proof of Lemma 4.12

Proof. Let C .
= C1 ∪ C2 denote a closed semicircle into the right half-plane, in which C1 denotes the straight line on the

imaginary axis from ri to −ri and C2 the semicircle from −ri to ri with radius r into the right half-plane. It is easy to note
that

N − P =
1
2π
1CArgΦ(λ).

Here, N and P represent the number of zeros and, respectively, poles in C . In view of the analyticity ofΦ(λ) in C , one obtains
that P = 0. It is then noted that

N =
1
2π

(
1C1ArgΦ(λ)+1C2ArgΦ(λ)

)
.

If we denote by1∞C i ArgΦ(λ), i = 1, 2, the changes of the argument as r tends to∞, one obtains

1∞C1ArgΦ(λ) = −21.

Next, let N∞ be the number of zeros inside the semicircle as r tends to∞, which is well defined by condition (b). Therefore,
we get that

N∞ =
1
2π
1∞C2ArgΦ(λ)−

1

π
.
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In the following we shall compute1∞C2ArgΦ(λ). Recalling the equality

1
2π
1∞C2ArgΦ(λ) =

1
2π i

∫
C2

Φ ′(λ)

Φ(λ)
dλ.

Let λ = reiθ , θ ∈ [−π
2 ,

π
2 ] and r ∈ (0,∞). We then get∫

C2

Φ ′(λ)

Φ(λ)
dλ =

∫ π
2

−
π
2

ireiθΦ ′(reiθ )
Φ(reiθ )

dθ

=

∫ π
2

−
π
2

ireiθ
(
1+ S

1+k1S

∫ h
0 aA(a)e

−ar(cos θ+i sin θ)da
)

reiθ + dCp +
α2S
1+k1S

+
α3κS
dD+k3κS

−
S

1+k1S

∫ h
0 A(a)e

−ar(cos θ+i sin θ)da
dθ

=

∫ π
2

−
π
2

ieiθ
(
1+ S

1+k1S

∫ h
0 aA(a)e

−ar(cos θ+i sin θ)da
)

eiθ +
dCp
r +

α2S
r(1+k1S)

+
α3κS

r(dD+k3κS)
−

S
r(1+k1S)

∫ h
0 A(a)e

−ar(cos θ+i sin θ)da
dθ.

Hence, it follows from Lebesgue’s dominated convergence theorem that∫
C2

Φ ′(λ)

Φ(λ)
dλ→ iπ as r →∞,

that is,

1
2π
1∞C2ArgΦ(λ) =

1
2
.

Consequently, N∞ = 1
2 −

1

π
. This completes the proof. �
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