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Abstract. The initial value problem for the generalized Kortweg-deVries equa-
tion

ut + (f(u))x + uxxx = 0, t, x ∈ R

is treated in terms of a recent theory of nonlinear operator semigroups associated
with semilinear evolution equations in Banach spaces. Two operators A and B
are introduced to represent the linear and nonlinear differential operators in the
equation and convert the initial-value problem to a semilinear problem

(SP) u′ (t) = (A + B) u (t) , t > 0; u (0) = v

in the Sobolev space H2(R). Five energy functionals are then employed to restrict
basic properties of A + B as well as the growth of mild solutions to (SP). The so-
lution operators to (SP) are obtained by applying a generation theorem for locally
Lipschitzian groups. Here the main point of our argument is to make a precise in-
vestigation of the resolvents of A + B and construct a group of locally Lipschitzian
operators G(t) on H2(R) which provides mild solutions to the problem. Also, reg-
ularized equations of the form

ut + (f(u))x + uxxx − µutxx = 0, t, x ∈ R,

µ being a positive parameter, are studied by means of the same approach and the
convergence of the associated groups Gµ(t) to the group G(t) is discussed.

1 Introduction

This paper is concerned with the initial value problem for the generalized Kortweg-
deVries equations

ut + (f (u))x + uxxx = 0, t, x ∈ R;

u (0, x) = v (x) , x ∈ R,
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where f is a nonlinear function of class C3 (R) which satisfies the equality f (0) = 0 and
the growth condition lim

|u|→∞
f ′ (u) / |u|p < ∞ for some p ∈ [0, 4), and v is a given initial

function in H2 (R).
In the case f (u) = u + u2/2, the above equation is known as the Kortweg-deVries

equation (usually, abbreviated to a K-dV equation), which is understood to be a general
model for the unidirectional propagation of long waves of small amplitude. In fact, u
determines the height of a wave at position x and time t with respect to the standard
level. The K-dV equation is also formulated to describe physical phenomena such as
magnetohydrodynamical waves and interaction of solitons.

In this paper, we convert the initial-value problem for the generalized K-dV equation
to a semilinear evolution problem of the form

(SP) u′ (t) = (A+B)u (t) , t ∈ R; u (0) = v,

in order to treat the Cauchy problem in an operator theoretic fashion. Here A represents
the third-order differential operator −∂3

x and B stands for the nonlinear first-order differ-
ential operator −∂x ◦ f . We then apply a recent theory for semilinear problems involving
quasidissipative operators developped in [7], [14], [17], [18] to this semilinear operator
A + B and construct a group G = {G(t); t ∈ R} of nonlinear operators on H2(R) which
provides mild solutions to (SP) in the sense that

G(t)v = GA(t)v +

∫ t

0

GA(t− s)BG(s)vds

for t ∈ R and v ∈ H2(R), where GA is the unitary group generated in L2(R) by A.
One of the main features of our argument is that we make use of five energy functionals
ϕk, k = 0, 1, 2, 3, 4 and investigate the growth of the mild solutions and their qualitative
properties. More precisely, we show that the group G enjoys exponential type growth
conditions with respect to the functionals ϕk, and that the regularity of the mild solutions
u(t) ≡ G(t)v is obtained by means of ϕk. In order to apply a recent theory for groups
of locally Lipschitzian operators, we necessitate investigating the ranges of I − λ(A+B),
|λ| < λ0 and their resolvemts (I−λ(A+B))−1 in H3(R) through a fixed point argument.
The aimed group G(t) is constructed through the exponential formula

G(t)v = H2- lim
λ↓0

(I − λ(A+B))−[t/λ]v, t ≥ 0 , v ∈ H2(R).

We then consider the initial value problem for the pseudoparabolic regularization of
the generalized Kortweg-deVries equations

ut + (f (u))x + uxxx − µutxx = 0, t, x ∈ R
u0 (0, x) = u0 (x) , x ∈ R,

where µ is a positive parameter. Due to the regularizing effect of the term −µutxx, a
nonlinear group of Fréchet differentiable operators which provides mild solutions to the
regularized problem is constructed on H1(R). In this case µ > 0, f is a nonlinear function
of class C1 (R) satisfying f (0) = 0 and u0 is an initial function given in H1. We also
discuss the convergence of the groups Gµ to G as µ→ 0.
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2 A generation theorem for nonlinear groups

It is now generally accepted that the theory of semilinear evolution equations proved to
be an important tool for the study of many important problems arising in various fields.
In this section, folllowing the lines of [7], an attempt is made to provide a generation
theorem for nonlinear groups of locally Lipschitz operators associated with a certain class
of semilinear evolution problems. For related Hille-Yosida theorems in this case, we refer
the reader to [14], [17], [18]. See also [12], [13], [21] for generation theorems for nonlinear
semigroups under more general assumptions.

Let (X, |·|) be a real Banach space, D a subset of X and ϕ : X → [0,∞] a l.s.c.
functional such that D ⊂ D (ϕ) = {v ∈ X,ϕ (v) <∞}. We denote by X∗ the dual of X,
and given v ∈ X and v∗ ∈ X∗, the value of v∗ at v is written 〈v, v∗〉. We also denote by
Dα = {v ∈ D;ϕ(v) ≤ α} a level set of D with respect to ϕ. The duality mapping of X is
the function F : X → 2X∗ defined by

Fv =
{
v∗ ∈ X∗; 〈v, v∗〉 = |v|2 = |v∗|2

}
.

We then define the inner products 〈·, ·〉i and 〈·, ·〉s on X ×X by

〈w, v〉i = inf {〈w, v∗〉 , v∗ ∈ Fv} ,

respectively
〈w, v〉s = sup {〈w, v∗〉 , v∗ ∈ Fv} .

A nonlinear operator B : D ⊂ X → X is said to be locally quasidissipative (respec-
tively strongly locally quasidissipative) on D(B) with respect to ϕ if for each α ≥ 0 there
exist ωα ∈ R such that

〈Bv −Bw, v − w〉i ≤ ωα|v − w|2 for v, w ∈ Dα,

respectively
〈Bv −Bw, v − w〉s ≤ ωα|v − w|2 for v, w ∈ Dα.

For further properties of the duality mapping and those of quasidissipative operators, see
[6] or [20].

By a locally Lipschitzian group on D with respect to ϕ, we mean a one-parameter
family G = {G(t); t ∈ R} of (possibly nonlinear) operators from D into itself satisfying
the following three conditions below:

(G1) For v ∈ D and s, t ∈ R, G (t)G (s) v = G (t+ s) v, G (0) v = v.

(G2) For v ∈ D, G (·) v ∈ C (R;X) .

(G3) For each α > 0 and each τ > 0 there is ω = ω (α, τ) ∈ R such that

|G (t) v −G (t)w| ≤ eω|t| |v − w|

for v, w ∈ Dα = {v ∈ D;ϕ (v) ≤ α} and t ∈ [0, τ ].

We consider the semilinear problem

(SP) u′ (t) = (A+B)u (t) , t ∈ R; u (0) = v ∈ D
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and we assume the following hypotheses on A,B and D:

(A) A : D (A) ⊂ X → X generates a (C0)-group GA = {GA (t) ; t ∈ R} such that
|GA(t)v| ≤ eωt |v| for v ∈ X, t ∈ R and some ω ∈ R.

(B) The level set Dα is closed for each α ≥ 0 and B : D ⊂ X → X is continuous on
each Dα.

Since the semilinear problem (SP) does not necessarily admit strong solutions, the
variation of constants formula is employed to obtain solutions in a generalized sense. It
is then said that a function u(·) ∈ C([0,∞);X) is a mild solution to (SP) if u(t) ∈ D for
t ≥ 0, Bu(·) ∈ C([0,∞);X) and the integral equation

u(t) = T (t)v +

∫ t

0

T (t− s)Bu(s)ds

is satisfied for each t ≥ 0. We also say that a semigroup S is associated with (SP), if it
provides mild solutions to (SP) in the sense that for each v ∈ D the function u(·) = S(·)v
is a mild solution to (SP).

Under the above hypotheses one can obtain a semilinear Hille-Yosida theorem for
locally Lipschitzian groups of nonlinear operators associated with (SP) as follows.

Theorem 2.1. Let a, b ≥ 0, A a linear operator in X such that A satisfies condition (A)
and let B be a nonlinear operator on D such that B satisfies condition (B) with respect to
a l.s.c. functional ϕ on X with D ⊂ D(ϕ). Then the following statements are equivalent:

(I) There is a nonlinear group G = {G (t) ; t ∈ R} of locally Lipschitz operators on D
satisfying the properties given below:

(I.1) G (t) v = GA (t) v +

∫ t

0

GA (t− s)BG (s) vds for t ∈ R and v ∈ D.

(I.2) For each α > 0 and τ > 0 there is ω1 = ω1 (α, τ) ∈ R such that

|G (t) v −G (t)w| ≤ eω1(α,τ)|t| |v − w|

for each v, w ∈ Dα.

(I.3) ϕ(G(t)v) ≤ ea|t|(ϕ(v) + b |t|) for t ∈ R and v ∈ D.

(II) The following subtangential condition and semilinear stability condition are satis-
fied:

(II.1) For each v ∈ D and ε > 0 there are (h1, vh1) ∈ (0, ε] × D and (h2, vh2) ∈
[−ε, 0)×D such that

(1/hi) |GA (hi) v + hiBv − vhi
| ≤ ε, ϕ (vhi

) ≤ ea|hi| (ϕ (v) + (b+ ε)hi) i = 1, 2.

(II.2) For each α > 0 there is ωα ∈ R such that

lim
h→0

(1/ |h|) [|GA (h) (v − w) + h (Bv −Bw)| − |v − w|] ≤ ωα |v − w|

for each v, w ∈ Dα.
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Moreover, if D and ϕ are convex, then the above statements are equivalent to:

(III) The following denseness condition, quasidissipativity condition and range condi-
tion are satisfied:

(III.1) D (A) ∩D is dense in D.

(III.2) For each α > 0 there is ωα ∈ R such that

〈(A+B)v − (A+B)w, v − w〉i ≤ ωα |v − w|2 ,
〈(A+B)v − (A+B)w, v − w〉s ≥ −ωα |v − w|2 .

(III.3) To α > 0 and ε > 0 there corresponds λ0 = λ0 (α) > 0 and for v ∈ Dα and
λ ∈ R with |λ| < λ0 (α) there exist vλ ∈ D (A) ∩D and zλ ∈ X such that |zλ| < ε,

vλ − λ (A+B) vλ = v + λzλ, ϕ (vλ) ≤ (1− |λ| a)−1 (ϕ (v) + (b+ ε) |λ|) .

It should be noted here that the implication from (III) to (I) does not require any
convexity on D or ϕ. Also, if X is a Hilbert space and (Av, v) = 0, as is the case of K-
dV equation, only the inequality |(Bv −Bw, v − w)| ≤ ω0 (α) |v − w|2 should be verified
in place of (III.2). Moreover, if B is a locally Lipschitz operator, then the denseness
assumption (III.1) is unnecessary for the implication from (III) to (I).

3 Semilinear evolution problems for the generalized

Kortweg-deVries equations

In this section we construct a nonlinear group which provides mild solutions to the
initial value problem for the generalized K-dV equation

ut + (f (u))x + uxxx = 0 t, x ∈ R(3.1)

u (0, x) = v (x) x ∈ R.(3.2)

Here R=(−∞,∞) , f in (3.1) is a nonlinear function of class C3 (R) normalized so
that f (0) = 0 and v in (3.2) is a given initial function in H2(R). We also assume that f
satisfies the growth condition

(3.3) lim
|u|→∞

f ′ (u) / |u|p <∞

for some real number p ∈ [0, 4), where f ′ denotes the derivative of f .
For a study of K-dV equation or its generalized form using compactness methods, we

refer the reader to, for instance, Kametaka [11], Tsutsumi and Mukasa [24], Bona and
Smith [5]. See also [8] for a discussion on K-dV equation using related methods. In this
paper we establish the existence and uniqueness of nonlinear groups of locally Lipschitz
operators on H2(R) which provides mild solutions to the initial value problem (3.1)-(3.2)
using the generation theorem stated in the previous section.

In what follows, Hk denotes the Sobolev space Hk (R) for each nonnegative integer
k. The inner product and the norm of Hk are denoted by (·, ·)k and |·|k respectively. In
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particular, H0 means just the ordinary Lebesgue space L2 = L2 (R) with inner product
(·, ·) and norm |·|. By C

(
R, Hk

)
we mean the space of Hk–valued continuous functions

on R. For each integer m ≥ 1 we write Cm
(
R;Hk

)
for the space of Hk–valued functions

which are m times continuously differentiable on R.
Let ∇ be the differential operator d/dx acting from H1 into L2. It is obvious that

(3.4) (∇v, w) = − (w,∇v) and (∇v, v) = 0 for v, w ∈ H1.

The following inequality is well known (see [22]).

Lemma 3.1. Let 2 ≤ q ≤ ∞. If v ∈ H1, then the inequality

(3.5) |v|Lq ≤ 2r |∇v|r |v|1−r

is valid, where r = (q − 2) /2q and |·|Lq denotes the norm in the space Lq (R).

Since we aim to rewrite equation (3.1) as an abstract semilinear evolution equation in
L2, of the form

(3.6) (d/dt)u (t) = (A+B)u (t) t ∈ R,

we introduce a densely defined, closed linear operator from H3 into L2 by

(3.7) Av = −∇3v for v ∈ H3.

It is then seen that A is the infinitesimal generator of a group GA = {GA (t) ; t ≥ 0} of
linear isometries on L2. More precisely, each of GA (t) maps Hk into itself and satisfies
the relation

(3.8) |GA (t) v|k = |v|k for v ∈ Hk and k ≥ 0.

Further, we define a nonlinear operator B from H1 into L2 by

(3.9) Bv = −∇f (v) = −f ′ (v)∇v for v ∈ H1.

The idea which motivates this approach is that B, as a lower order differential operator,
may be regarded as a continuous perturbation of A via a suitable restriction of the domain.
The same thing is also valid for quasidissipativity, as seen in the following result.

Proposition 3.1. The following assertions hold:

(i) Let v ∈ H1 and let {vn}n≥1 be a sequence in H1 such that sup
n≥1

|vn|1 <∞. If vn ⇀ v

in L2, then Bvn ⇀ Bv in L2.

(ii) Let v ∈ H2 and let {vn}n≥1 be a sequence in H2 such that sup
n≥1

|vn|2 <∞. If vn → v

in L2, then Bvn → Bv in L2.

(iii) For each α ≥ 0, there is a number ω0 (α) ≥ 0 such that

(3.10) |(Bv −Bw, v − w)| ≤ ω0 (α) |v − w|2

for v, w ∈ H2 with |v|2 ≤ α, |w|2 ≤ α.

(iv) For each α ≥ 0, there is a number ω1 (α) ≥ 0 such that

(3.11) |(Bv −Bw, v − w)|1 ≤ ω1 (α) |v − w|21
for v, w ∈ H3 with |v|3 ≤ α, |w|3 ≤ α.
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Proof. First, we see that for each u ∈ H1

u2 (x) =

∫ x

−∞
u (s)u′ (s) ds−

∫ ∞

x

u (s)u′ (s) ds for a.e. x ∈ R.

We therefore infer that∣∣u2 (x)
∣∣ ≤ ∫ ∞

−∞
|u (s)| |u′ (s)| ds ≤ (|u| |u′|) for a.e. x ∈ R,

which implies |u|L∞ ≤
(
1/
√

2
)
|u|1 . However, for the sake of simplicity, in what follows

we will use the inequality

(3.12) |u|L∞ ≤ |u|1 for each u ∈ H1.

Let v ∈ H1 and let {vn}n≥1 be a sequence in H1 such that sup
n≥1

|vn|1 < ∞ and vn ⇀ v in

L2. Denoting sup
n≥1

|vn|1 by M1, an easy computation implies

|Bvn|2 =

∫
R
|f ′ (vn)∇vn|2 dx ≤

(
sup
|x|≤M1

|f ′ (s)|

)2 ∫
R
|∇vn|2 dx,

from which we infer that sup
n≥1

|Bvn| <∞ and vn → v in L2
loc (R).

Let ϕ ∈ L2. Since C∞
c (R) is dense in L2, one can construct a sequence {ϕm}m≥1 such

that ϕm ∈ C∞
c (R) and ϕm → ϕ in L2 as m → ∞. In view of this and of (3.4), we see

that

〈Bvn −Bv, ϕm〉 = 〈f (vn)− f (v) ,∇ϕm〉

=

∫
Cm

(f (vn)− f (v))∇ϕmdx

≤ |f (vn)− f (v)|L2(Cm) |∇ϕm|L2(Cm)

≤ C (f) |v − vn|L2(Cm) |∇ϕm|L2(Cm) ,

where m is an arbitrary nonnegative integer, Cm denotes the (compact) support of ϕm

and C (f) denotes a constant which depends on f , but not on n. Thus it follows that

(3.13) 〈Bvn −Bv, ϕm〉 → ∞ as n→∞.

Since

〈Bvn −Bv, ϕ〉 = 〈Bvn −Bv, ϕ− ϕm〉+ 〈Bvn −Bv, ϕm〉

≤
(

sup
n≥1

|Bvn|+ |Bv|
)
|ϕ− ϕm|+ 〈Bvn −Bv, ϕm〉 ,

the desired result now follows from (3.13).
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(ii) Let v ∈ H2 and let {vn}n≥1 be a sequence such that sup
n≥1

|vn|2 <∞ and vn → v in L2

as n→∞. Since |f (vn)− f (v)| ≤ C (f) |vn − v| , for n ≥ 1, we infer that f (vn) → f (v)
in L2. In view of the estimate

(3.14) |Bvn −Bv|2 ≤ |f (v)− f (vn)|
∣∣∇2f (vn)−∇2f (v)

∣∣ ,
to derive the desired convergence result it remains to show that sup

n≥1
|∇2f (vn)−∇2f (v)| <

∞ . To this end, we observe that∣∣∇2f (vn)
∣∣ =

∣∣f ′′ (vn) (∇vn)2 + f ′ (vn)∇2vn

∣∣
≤
∣∣f ′′ (vn) (∇vn)2

∣∣+ ∣∣f ′ (vn)∇2vn

∣∣
≤ sup

|ξ|≤M2

|f ′′ (ξ)| |∇vn|2L4 + sup
|ξ|≤M2

|f ′ (ξ)|
∣∣∇2vn

∣∣ ,
where M2 denotes sup

n≥1
|vn|2. It now follows from Lemma 3.1 that

∣∣∇2f (vn)
∣∣ ≤ C1 (f)

(∣∣∇2vn

∣∣1/2 |∇vn|3/2 +
∣∣∇2vn

∣∣) ,
and since {vn}n≥1 is convergent in H2, this yields

(3.15) sup
n≥1

∣∣∇2f (vn)−∇2f (v)
∣∣ <∞.

Combining (3.14) and (3.15) we now obtain the desired result.

(iii) Let α ≥ 0, and define ω0 (α) by

(3.16) ω0 (α) = (1/2) sup
{
|f ′′ (v)∇v|L∞(R) ; v ∈ H2, |v|2 ≤ α

}
.

For θ ∈ [0, 1], let us denote zθ(·) = θv(·) + (1− θ)w(·). Suppose that v, w ∈ H2,
|v|2 ≤ α, |w|2 ≤ α, and for θ ∈ [0, 1], let us denote zθ(·) = θv(·) + (1− θ)w(·). Therefore,
by (3.4) it follows that

(Bv −Bw, v − w) = (f (v)− f (w) ,∇ (v − w))

=

(∫ 1

0

d/dθ (f (zθ)) dθ,∇ (v − w)

)
=

(∫ 1

0

f ′ (zθ) dθ,∇
(
1/2 (v − w)2))

= (−1/2)

(∫ 1

0

f ′′ (zθ) (∇zθ) dθ, (v − w)2

)
.

From this relation we deduce that |(Bv −Bw, v − w)| ≤ ω0 (α) |v − w|2, which proves the
third statement.

(iv) Let α ≥ 0, and define ω1(α) by

ω1 (α) = max
{
ω0 (α) , (sup |f ′′′ (v)|L∞) (sup |∇v|L∞)2 + (sup |f ′′ (v)|L∞)

(
sup

∣∣∇2v
∣∣
L∞

)(3.17)
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+ (3/2) (sup |f ′′ (v)|L∞) (sup |∇v|L∞)} ,

each of the supremums being considered over the set {v ∈ H3, |v|3 ≤ α}. As a first step,
we see that

One may see that

(∇ (Bv −Bw) ,∇ (v − w)) =
(
f ′ (v)∇v − f ′ (w)∇w,∇2 (v − w)

)
=

(∫ 1

0

(d/dθ) (f ′ (zθ)∇zθ) dθ,∇2 (v − w)

)
=

(∫ 1

0

f ′′ (zθ) (v − w)∇zθdθ,∇2 (v − w)

)
+

(∫ 1

0

f ′ (zθ) (∇v −∇w) dθ,∇2 (v − w)

)
.

We denote by T1 and T2, respectively, the first and the second term of the right-hand side
of the above inequality. By (3.4), it follows that

|T1| =
∣∣∣∣((∫ 1

0

f ′′ (zθ)∇zθdθ

)
(v − w) ,∇2 (v − w)

)∣∣∣∣
=

∣∣∣∣(∇((∫ 1

0

f ′′ (zθ)∇zθdθ

)
(v − w)

)
,∇ (v − w)

)∣∣∣∣
≤
∣∣∣∣((∫ 1

0

f ′′′ (zθ) (∇zθ)
2 dθ

)
(v − w) ,∇ (v − w)

)∣∣∣∣
+

∣∣∣∣((∫ 1

0

f ′′ (zθ)∇2zθdθ

)
(v − w) ,∇ (v − w)

)∣∣∣∣
+

∣∣∣∣((∫ 1

0

f ′′(zθ)∇zθdθ

)
∇(v − w),∇(v − w)

)∣∣∣∣
≤
[
(sup |f ′′′ (v)|L∞) (sup |∇v|L∞)2 + (sup |f ′′ (v)|L∞)

(
sup

∣∣∇2v
∣∣
L∞

)]
· (|v − w| , |∇ (v − w)|) + (sup |f ′′ (v)|L∞) (sup |∇v|L∞) |∇ (v − w)|2

and

|T2| =
∣∣∣∣((∫ 1

0

f ′ (zθ) dθ

)
∇ (v − w) ,∇2 (v − w)

)∣∣∣∣
=

∣∣∣∣(∫ 1

0

f ′ (zθ) dθ, (1/2)∇
(
(∇ (v − w))2))∣∣∣∣

= (1/2)

∣∣∣∣(∫ 1

0

f ′′ (zθ)∇zθdθ, (∇ (v − w))2

)∣∣∣∣
≤ (1/2) (sup |f ′′ (v)|L∞) (sup |∇v|L∞) |∇ (v − w)|2 .

Since (|v − w| , |∇ (v − w)|) ≤ |w − v| |∇ (v − w)| ≤ |v − w|21, we obtain the desired
result.
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By this proposition, it is seen that the nonlinear differential operator B is continuous
and quasidissipative on each subset {v ∈ H2; |v|2 ≤ α}, α ≥ 0. In view of this fact, we
can employ the classical notion of mild solution.

Definition 3.1. Let v ∈ H2. A H2-valued function u (·) on R is said to be a mild solution
of (3.6) (or of (3.1)) with u (0) = v if u (·) ∈ C (R;H2) and satisfies

(3.18) u (t) = GA (t) v +

∫ t

0

GA (t− s)Bu (s) ds for t ∈ R.

Let v ∈ H2 and u (·) ∈ C (R;H2). As is easily seen, u (·) is a mild solution of (3.6)
with u (0) = v if and only if satisfies

(3.19) (u (t) , w) = (v, w) +

∫ t

0

{(
∇2u (s) ,∇w

)
− (∇f (u (s)) , w)

}
ds

for t ∈ R and w ∈ H1. By Theorem 2.1 and Proposition 3.1, we have the following result
which guarantees the uniqueness of mild solutions.

Proposition 3.2. Let u (·) , û (·) be mild solutions of (3.6) with initial data u(0) = v and
û(0) = v. Then for each τ > 0 we have

(3.20) |u (t)− û (t)| ≤ eω0(α)|t| |v − v̂| for t ∈ [−τ, τ ] .

where α is chosen such that |u (t)|2 ≤ α and |û (t)|2 ≤ α for each t ∈ [−τ, τ ] and ω0 (α)
is the constant provided for α by Lemma 3.1.

We next discuss the existence of nonlinear groups of locally Lipschitz operators on H2

which provide mild solutions to (3.6). To this purpose, we introduce five l.s.c. functionals
ϕk : Hk → R, k = 0, 1, 2, 3, 4 which will also be employed to establish the regularity
properties of the solution. We define

ϕ0 (v) = |v| , v ∈ L2;(3.21)

ϕ1 (v) = (1/2) |∇v|2 −
∫ ∞

−∞

∫ v(x)

0

f (ξ) dξdx, v ∈ H1;

ϕ2 (v) = (1/2)
∣∣∇2v

∣∣2 + (5/6)
(
f (v) ,∇2v

)
, v ∈ H2;

ϕ3 (v) =
∣∣∇3v +∇f (v)

∣∣ , v ∈ H3;

ϕ4 (v) =
∣∣∇3f (v) +∇f (v)

∣∣
1
, v ∈ H4.

Since we have established the continuity and quasidissipativity of B on level sets of H2

with respects to the usual Sobolev space norm, it then becomes necessary to show that
ϕ0, ϕ1, ϕ2 are equivalent to | · |0, | · |1, | · |2, in the sense that the level sets induced
are equivalent. However, the functionals ϕk appear to be more intimately related to
the physical structure of the model since, as will be seen in Theorem 4.2, ϕ1 and ϕ2 are
actually invariants for the generalized Kortweg-deVries equation (3.1). It is also important
to see that ϕ3(v) = |(A+B)v|3 for v ∈ H3 and ϕ4(v) = |(A+B)v|4 for v ∈ H4.
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Lemma 3.2. The following affirmations hold:

(i) For each α0, α1 ≥ 0 there is β1 = β1 (α0, α1) ≥ 0 such that if v ∈ H1, ϕ0 (v) ≤ α0

and ϕ1 (v) ≤ α1, then |∇v| ≤ β1.

(ii) For each α0, α1, α2 ≥ 0 there is β2 = β2 (α0, α1, α2) ≥ 0 such that if v ∈ H2,
ϕ0 (v) ≤ α0 and ϕ1 (v) ≤ α1, then |∇v| ≤ β2.

Proof. (i) In view of the growth condition (3.3), one finds C1 and C2 ∈ R such that
f ′ (s) ≤ C1 + C2 |s|p for each s ∈ R, and by integration we find that

∫ s

0
f (ξ) dξ ≤

C1 |s|2 +C2 |s|p+2 for each s ∈ R and some C1, C2. The use of Lemma 3.1 leads us to the
estimate ∫ ∞

−∞

∫ v(x)

0

f (ξ) dξdx ≤ C1 |v|2 + C2 |v|p+2
Lp+2(3.22)

≤ C1 |v|2 + C22
p/2 |∇v|p/2 |v|(p+4)/2

for each v ∈ H1. Invoking Young’s inequality, one obtains

C22
p/2 |∇v|p/2 |v|(p+4)/2 ≤ (1/4) |∇v|2 + (1/4) (4− p)

(
C2 (4p)p/4 |v|(p+4)/2

)4/4−p

.

Hence we get the estimate

(3.23) |∇v|2 ≤ 4 (α1 + C1α0)
2 + (4− p)

(
C2 (4p)p/4 α

(p+4)/2
0

)4/4−p

,

from which the desired result follows.
(ii) By (3.4) and (3.21) it is seen that∣∣∇2v

∣∣2 = 2ϕ2 (v)− (5/3)
(
f ′ (v) , (∇v)2) ,

and therefore

(3.24)
∣∣∇2v

∣∣2 ≤ 2α2 + (5/3) C (f, α0, β1) β
2
1

Here, by C (f, α0, β1) is denoted a positive constant which depends only on f , α0, β1.

In view of Theorem 2.1, it is necessary to show that the range condition (III.3) is
verified with respect to ϕ = ϕ2. Therefore, to proceed any further, we need the follow-
ing technical lemma, which gives an estimate for intermediary terms arising from the
computation of the values of ϕ2.

Lemma 3.3. For each α0 ≥ 0 and α1 ≥ 0 there are a = a (α0, α1) ≥ 0 and b = b (α0, α1) ≥
0 such that

(3.25)
∣∣(1/6)

(
f ′′′ (v) (∇v)3 ,∇2v

)
+ (5/6)

(
f ′ (v)∇2v, f ′ (w)∇w

)∣∣ ≤ aϕ2 (v) + b

for v, w ∈ H2 with ϕ0 (v) ≤ α0, ϕ1 (v) ≤ α1, ϕ0 (w) ≤ α0, ϕ1 (w) ≤ α1.
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Proof. Let α0, α1 be positive numbers and let v, w ∈ H2 so that ϕ0(v) ≤ α0, ϕ0(w) ≤ α0,
ϕ1(v) ≤ α1, ϕ1(w) ≤ α1. We may apply Lemma 3.2 to find β1 = β1(α0, α1) ≥ 0, and
inequality (3.13) now implies that there is γ1 = γ1(α0, α1) so that |v|L∞ ≤ γ1, |w|L∞ ≤ γ1.
Denote sup

|ξ|≤γ1

|f ′′′ (ξ)| by C (f, α0, α1). It is then easily seen that

∣∣(1/6)
(
f ′′′ (v) (∇v)3 ,∇2v

)
+ (5/6)

(
f ′ (v)∇2v, f ′ (w)∇w

)∣∣
≤ (1/6)

∣∣f ′′′ (v) (∇v)3
∣∣ ∣∣∇2v

∣∣+ (5/6)
∣∣f ′ (v)∇2v

∣∣ |f ′ (w)∇w|

We denote by T1 and T2 respectively the first and the second term of the right hand side
of the above inequality, and we observe that

T1 = (1/6)
∣∣f ′′′ (v) (∇v)3

∣∣ ∣∣∇2v
∣∣ ≤ (1/6) C (f, α0, α1) |∇v|3L6

∣∣∇2v
∣∣

≤ (1/3) C (f, α0, α1)
∣∣∇2v

∣∣2 |∇v|2
≤ (1/3) C (f, α0, α1) β

2
1

∣∣∇2v
∣∣2

and

T2 = (5/6)
∣∣f ′ (v)∇2v

∣∣ |f ′ (w)∇w| ≤ (5/6) C
2
(f, α0, α1)

∣∣∇2v
∣∣ |∇w|

≤ (5/12) C
2
(f, α0, α1) β1

(∣∣∇2v
∣∣2 + 1

)
,

where C (f, α0, α1) = sup
|ξ|≤γ1

|f ′ (ξ)|. Using (3.23), one then obtains

∣∣(1/6)
(
f ′′′ (v) (∇v)3 ,∇2v

)
+ (5/6)

(
f ′ (v)∇2v, f ′ (w)∇w

)∣∣
≤ (2/3)

(
C β2

1 + (5/4) C
2
β1

) (
ϕ2 (v) + (5/6) C β2

1

)
+ (5/12) C

2
β1

= a (α0, α1)ϕ2 (v) + b (α0, α1) .

4 Resolvents of the semilinear operator A +B

The next result shows that a generalized form of the range condition is fulfilled.

Theorem 4.1. Let v ∈ H3, ε > 0 and suppose that α0, α1, α2 > 0 are chosen such
that ϕ0 (v) + ε < α0, ϕ1 (v) + ε < α1, and e2a (|ϕ2 (v)|+ (b+ ε)) < α2, where a =
a (α0, α1) and b = b (α0, α1) are numbers as in Lemma 3.3. Then there is a number
λ0 = λ0 (α1, α2, α3, ε), 0 < λ0 < min {1, 1/2a, 1/ω0} such that for each λ ∈ (−λ0, λ0)
there is an unique element vλ ∈ H3 which satisfies

vλ − λ (A+B) vλ = v,(4.1)

and

ϕ0 (vλ) ≤ ϕ0 (v) + |λ| ε,(4.2)
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ϕ1 (vλ) ≤ ϕ1 (v) + |λ| ε,
ϕ2 (vλ) ≤ (1− |λ| a)−1 (ϕ2 (v) + |λ| (b+ ε)) ,

ϕ3 (vλ) ≤ (1− |λ|ω0)
−1 ϕ3 (v) .

Furthermore, if v ∈ H4, then vλ ∈ H4 and satisfies

ϕ4 (vλ) ≤ (1− |λ|ω1)
−1 ϕ4 (v) .

Proof. Let v ∈ H3, ε > 0 and suppose that α0, α1, α2 are numbers as indicated above.
By virtue of Lemma 3.2 we can choose β0, β1, β2 > 0 such that

(4.3)
{
w ∈ H2, ϕk (w) ≤ αk, k = 0, 1, 2

}
⊂
{
w ∈ H2,

∣∣∇kw
∣∣ ≤ βk, k = 0, 1, 2

}
.

We denote

L0 = sup
{
|Bw| ;w ∈ H1, |w| ≤ β0, |∇w| ≤ β1

}
;(4.4)

L1 = sup
{
|∇Bw| ;w ∈ H2,

∣∣∇kw
∣∣ ≤ βk, k = 0, 1, 2

}
.(4.5)

Further, choose β3 > 0 such that |∇3v|+ 2L0 ≤ β3 and set

(4.6) L2 = sup
{∣∣∇2Bw

∣∣ ;w ∈ H3,
∣∣∇kw

∣∣ ≤ βk, k = 0, 1, 2, 3
}
.

By (4.3) and Proposition 3.1, there is a number δ = δ (|v|3 , ε) > 0 such that if w ∈ H3,
|w − v| < δ and

∣∣∇kw
∣∣ ≤ max

{
βk,
∣∣∇kv

∣∣+ Lk

}
, k = 0, 1, 2, then

|Bw −Bv| ≤ ε/2,(4.7)

|f (w)− f (v)| β3 ≤ ε/2,

|∇Bw −∇Bv| β3 ≤ ε/5,

|f ′ (w)− f ′ (v)| β3

(∣∣∇2v
∣∣+ L2

)
≤ ε/5.

We now try to obtain (4.1) and (4.2) using a fixed point argument. Set

(4.8) λ0 = min {1, δ/β3, ε/ (2β3) , 1/ (2a) , 1/ω0}

and let λ ∈ (−λ0, λ0), λ 6= 0 be fixed. Let K be a subset of H3 defined by

(4.9) K =
{
w ∈ H3; |w − v| ≤ |λ| β3,

∣∣∇kw
∣∣ ≤ βk, k = 0, 1, 2, 3

}
.

It is easily seen that K is convex, bounded and closed in L2. Since L2 is reflexive, K
is weakly compact in L2. We define a mapping Γ : K → H3 by

(4.10) Γw = (I − λA)−1 (v + λBw) for w ∈ K.

Since the resolvent function (I − λA)−1 is strongly strongly continuous in L2, it is also
weakly weakly continuous, and Proposition 3.1 implies that Γ is weakly weakly continuous
on L2. We now show that Γ maps K into itself. To prove this, let w ∈ K and note z = Γw.
It is seen that

|z − v|2 = (z − v, λAz) + (z − v, λBw)
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= (−v, λAz) + (z − v, λBw)

= λ (Av, z) + λ (z − v,Bw)

≤ |λ| |z − v|
(∣∣∇3v

∣∣+ |Bw|
)
,

and thus

(4.11) |z − v| ≤ |λ|
(∣∣∇3v

∣∣+ L0

)
≤ |λ| β3.

Also, since (4.10) implies

(4.12) λAz = z − v − λBw,

it follows from (4.4) that ∣∣∇3z
∣∣ ≤ (1/ |λ|) |z − v|+ |Bw|(4.13)

≤
∣∣∇3v

∣∣+ 2L0 ≤ β3.

We next prove that
∣∣∇kz

∣∣ ≤ ∣∣∇kv
∣∣ + Lk, k = 0, 1, 2 , which will enable us to use the

estimates in (4.7). Using again (3.4), we obtain

|z|2 = (z, v + λAz + λBw)

= (z, v) + λ (z, Bw)

≤ |z| (|v|+ |λ| |Bw|) .

Together with (4.4) and (4.8), this implies |z| ≤ |v|+|λ|L0. Repeating the same argument
as above, it is seen that

|∇z|2 =
(
−∇2z, v + λAz + λBw

)
= −

(
∇2z, v + λBw

)
= (∇z,∇v + λ∇Bw)

≤ |∇z| (|∇v|+ |λ| |∇Bw|) ,

and thus one obtains from (4.5) and (4.8) that |∇z| ≤ |∇v|+ |λ|L1.
Let now zn → z in H2, zn ∈ C∞

c (R). By (3.4) and (4.12), we have(
∇2z,∇2z

)
=
(
∇2z,∇2z −∇2zn

)
+
(
∇2z,∇2zn

)
(4.14)

≤
∣∣∇2z

∣∣ ∣∣∇2z −∇2zn

∣∣+ (v + λAz + λBw,∇4zn

)
.

Since (4.12) implies that Az ∈ H2, using (3.4) we obtain that(
v + λAz + λBw,∇4zn

)
→
(
∇2v,∇2z

)
+ λ

(
∇2Az,∇2z

)
+ λ

(
∇2Bw,∇2z

)
as n→∞. Combining this with (4.14), one may obtain that |∇2z| ≤ |∇2v|+L2. We next
prove that ϕk (z) ≤ αk for k = 0, 1, 2, and so (4.3) will imply that

∣∣∇kz
∣∣ ≤ βk, k = 0, 1, 2

. From (3.4) and (4.12) it is clear that

|z|2 = (z, v + λAz + λBw)

= (z, v) + λ(z, Bw −Bz)
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≤ |z| (|v|+ |λ| |Bw −Bz|) ,

from which one may get

|z| ≤ |v|+ |λ| (|Bw −Bv|+ |Bz −Bv|) .

Therefore, by (4.7), z satisfies the inequality

(4.15) |z| ≤ |v|+ |λ| ε < α0.

Note that in the above estimates we have also used the fact that (Bz, z) = 0 for each
z ∈ H1.

We now try to estimate ϕ1(z). By (3.21) we have

ϕ1 (z)− ϕ1 (v) = (1/2)
∣∣∇2z

∣∣2 − (1/2)
∣∣∇2v

∣∣2 − ∫ ∞

−∞

∫ z(x)

v(x)

f (ξ) dξdx(4.16)

= (1/2)
∣∣∇2z

∣∣2 − (1/2)
∣∣∇2v

∣∣2
−
∫ ∞

−∞
f (θ (x) z (x) + (1− θ (x)) v (x)) (z (x)− v (x)) dx.

Put w1 (·) = θ (·) z (·) + (1− θ (·)) v (·). From (4.8) we infer that

(4.17) |w1 − v| = |θ (z − v)| ≤ |λ| β3 < δ.

Since |w − v| < δ, relation (4.7) leads us to the estimate

(4.18) |(f (w1)− f (w) , z − v)| ≤ ε/β3 |z − v| ≤ |λ| ε.

Therefore, by (4.16) and (4.18) it follows that

ϕ1 (z)− ϕ1 (v) ≤ (1/2) |∇z|2 − (1/2) |∇v|2 − (f (w) , z − v) + |λ| ε.

Since (f (w) , z − w) = λ (f (w) , Az +Bw) and (f (w) , Bw) = 0, it is seen that

(4.19) ϕ1 (z)− ϕ1 (v) ≤ (1/2) |∇z|2 − (1/2) |∇v|2 − λ (∇Bw,∇z) + |λ| ε

and this implies that ϕ1 (z) ≤ ϕ1 (v) + |λ| ε < α1.
To estimate ϕ2(z) we first observe that, by virtue of (3.4),

(
f (z) ,∇2z

)
−
(
f (v) ,∇2v

)
=
(
f (z)− f (v) ,∇2z

)
+
(
f (v) ,∇2z −∇2v

)(4.20)

=
(
f ′ (w1) (z − v) ,∇2z

)
− (∇Bv, z − v)

=
(
(f ′ (w1)− f ′ (z)) (z − v) ,∇2z

)
+
(
f ′ (z) (z − v) ,∇2z

)
− (∇Bv −∇Bw, z − v)− (∇Bw, z − v)

=
(
(f ′ (w1)− f ′ (z)) ,∇2z (z − v)

)
+
(
f ′ (z)∇2z, z − v

)
− (∇Bv −∇Bw, z − v)− (∇Bw, z − v) ,
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where w1 is defined as above.
Since∣∣((f ′ (w1)− f ′ (z)) ,

(
∇2z

)
(z − v)

)∣∣ ≤ (|f ′ (w1)− f ′ (v)|+ |f ′ (v)− f ′ (z)|)
∣∣∇2z

∣∣ |z − v| ,

the estimates in (4.17) imply

|f ′ (w1)− f ′ (v)| ≤ ε/
(
5β3

(∣∣∇2v
∣∣+ L2

))
,

and also
|f ′ (z)− f ′ (v)| ≤ ε/

(
5β3

(∣∣∇2v
∣∣+ L2

))
.

Hence |((f ′ (w1)− f ′ (z)) , (∇2z) (z − v))| ≤ 2ε |λ| |∇2z| / ((|∇2v|+ L2)) , and, since
|∇2z| ≤ |∇2v|+ L2,

(4.21)
∣∣((f ′ (w1)− f ′ (z)) ,

(
∇2z

)
(z − v)

)∣∣ ≤ 2ε |λ| /5.

From (4.7) and (4.11), it is easy to see that

(4.22) |(∇Bv −∇Bw, z − v)| ≤ |∇Bv −∇Bw| |z − v| ≤ ε |λ| /5.

We now estimate the term (f ′ (z)∇2z, z − v)− (∇Bw, z − v) from the right-hand side of
(4.20). From (3.4) and (4.12) we have(
f ′ (z)∇2z, z − v

)
− (∇Bw, z − v) =

(
f ′ (z)∇2z, λ (Az +Bw)

)
− λ (∇Bw,Az +Bw)

= λ
(
f ′ (z)∇2z, λ (Az +Bw)

)
− λ (∇Bw,Az)

= −λ
(
f ′ (z)∇2z,∇3z + f ′ (w)∇w

)
− λ (∇Bw,Az) .

On the other hand, (
∇2z,∇2z

)
=
(
∇2z,∇2v + λ∇2Az + λ∇2Bw

)
=
(
∇2z,∇2v

)
+ λ

(
∇2z,∇2Bw

)
=
(
∇2z,∇2v

)
+ λ (Az,∇Bw) ,

from which we infer that(
f ′ (z)∇2z, z − v

)
+ (∇Bw, z − v) =− λ

(
f ′ (z)∇2z,∇3z + f ′ (w)∇w

)
+
(
∇2z,∇2v

)
−
(
∇2z,∇2z

)
.

In order to proceed any further, we need the important “integration by parts” formula

(4.23) 5
(
f ′ (z)∇2z,∇3z

)
= (∇Bz,Az) +

(
f ′′′ (z) (∇z)3 ,∇2z

)
.

To prove this, we first see that(
f ′ (z)∇2z,∇3z

)
= −

(
∇
(
f ′ (z)∇2z

)
,∇2z

)
(4.24)

= −
(
f ′′ (z)∇z∇2z,∇2z

)
−
(
f ′ (z)∇3z,∇2z

)
= −

(
f ′′ (z)∇z∇2z,∇2z

)
−
(
f ′ (z)∇2z,∇3z

)
.
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This implies

2
(
f ′ (z)∇2z,∇3z

)
=−

(
f ′′ (z)∇z∇2z,∇2z

)
=− (1/2)

(
∇
(
f ′′ (z) (∇z)2)− f ′′′ (z) (∇z)3 ,∇2z

)
= (1/2)

(
f ′′ (z) (∇z)2 ,∇3z

)
+ (1/2)

(
f ′′′ (z) (∇z)3 ,∇2z

)
= (1/2)

(
∇ (f ′ (z)∇z)− f ′ (z)∇2z,∇3z

)
+ (1/2)

(
f ′′′ (z) (∇z)3 ,∇2z

)
=− (1/2)

(
∇Bz,∇3z

)
− (1/2)

(
f ′ (z)∇2z,∇3z

)
+ (1/2)

(
f ′′′ (z) (∇z)3 ,∇2z

)
,

from which the desired equality follows. Note that (4.23) justifies also the choice of the
functional ϕ2 in (3.21).

Thus it follows from (4.20) through (4.23) that(
f (z) ,∇2z

)
−
(
f (v) ,∇2v

)
≤ 3 |λ| ε/5− λ

(
f ′ (z)∇2z, f ′ (w)∇w

)
+
(
∇2v,∇2z

)
−
(
∇2z,∇2z

)
− λ

(
(1/5) (∇Bz,Az) +

(
f ′′′ (z) (∇z)3 ,∇2z

))
≤ 3 |λ| ε/5− (λ/5) (∇Bz,Az) +

(
∇2v,∇2z

)
−
(
∇2z,∇2z

)
− (λ/5)

[(
f ′ (z)∇2z, f ′ (w)∇w

)
+ 5

(
f ′′′ (z) (∇z)3 ,∇2z

)]
.

Since λ (∇Bw,Az) = (∇2z,∇2z)− (∇2v,∇2z), we see that

(
f (z) ,∇2z

)
−
(
f (v) ,∇2v

)(4.25)

≤ 3 |λ| ε/5− (λ/5)
[(
f ′ (z)∇2z, f ′ (w)∇w

)
+ 5

(
f ′′′ (z) (∇z)3 ,∇2z

)]
− (λ/5) (∇Bz −∇Bw,Az)− (6/5)

((
∇2z,∇2z

)
−
(
∇2v,∇2z

))
.

Using (4.7) one gets

|(∇Bz −∇Bw,Az)| ≤ (|∇Bz −∇Bv|+ |∇Bv −∇Bw|) |Az|(4.26)

≤ 2ε/5.

We therefore infer from (4.25), (4.26) and Lemma 3.3 that(
f (z) ,∇2z

)
−
(
f (v) ,∇2v

)
+ (6/5)

((
∇2z,∇2z

)
−
(
∇2v,∇2z

))
≤ ε |λ|+ |λ| (aϕ2 (z) + b) /5.

Since (
∇2z,∇2z

)
−
(
∇2v,∇2z

)
≥ (1/2)

((
∇2z,∇2z

)
−
(
∇2v,∇2v

))
,

we see that
ϕ2 (z)− ϕ2 (v) ≤ (5/6) ε |λ|+ |λ| (aϕ2 (z) + b) .

17



From this inequality we deduce

ϕ2 (z) ≤ (1− |λ| a)−1 (ϕ2 (v) + (5/6) ε |λ|+ |λ| b)
< (1− |λ| a)−1 (ϕ2 (v) + |λ| (b+ ε)) .

Noting that (4.8) implies (1− |λ| a)−1 ≤ 1 + 2 |λ| a < e2a, one gets

(4.27) ϕ2 (z) ≤ e2a (|ϕ2 (v)|+ |λ| (b+ ε)) < α2,

and so we obtain that z ∈ K. Applying Tihonov’s Fixed Point Theorem, we get the
existence of a fixed point vλ satisfying (4.1).

As seen in Proposition 3.1, A+B−ω0 (α2) I is dissipative on {v ∈ H2; |v|2 ≤ α2}, and
this implies the uniqueness of vλ. Also, since A+B, −A−B are quasidissipative, we get
from (4.1) that

|λ|ϕ3 (vλ) ≤ (1− |λ|ω0)
−1 |λ (A+B) v| = |λ| (1− |λ|ω0)

−1 ϕ3 (v) ,

and so ϕ3 (vλ) ≤ (1− |λ|ω0)
−1 ϕ3 (v). It is easily seen that if v ∈ H4, then vλ ∈ H4 and,

by the same reasoning, ϕ4 (vλ) ≤ (1− |λ|ω1)
−1 ϕ4 (v), which finishes the proof.

We can now employ the generation result stated in Section 2 to obtain the existence
of a nonlinear group of locally Lipschitz operators on H2 which provides mild solutions
to the initial value problem for the generalized Kortweg-deVries equation (3.1).

Theorem 4.2. There exists a nonlinear group G = {G (t) ; t ∈ R} on H2 such that the
following properties are satisfied:

(i) For each v ∈ H2, G (·) v ∈ C (R;H2) and G (·) v satisfies

(4.28) G (t) v = GA (t) v +

∫ t

0

GA (t− s)BG (s) vds for t ∈ R.

(ii) ϕ0 (G (t) v) = ϕ0 (v) and ϕ1 (G (t) v) = ϕ1 (v) for t ∈ R and v ∈ H2.

(iii) For each α0, α1 ≥ 0 there exist positive numbers a = a (α0, α1) and b = b (α0, α1)
such that

(4.29) ϕ2 (G (t) v) ≤ ea|t| (ϕ2 (v) + b |t|)

for v ∈ H2 with ϕ0 (v) ≤ α0, ϕ1 (v) ≤ α1 and t ∈ R.

(iv) Each of G (t) maps H3 into itself and H4 into itself.

(v) For each αk ≥ 0, k = 0, 1, 2 and each τ > 0, there exists a positive number
ω0 = ω0 (α0, α1, α2, τ) such that

(4.30) ϕ3 (G (t) v) ≤ eω0|t|ϕ3 (v)

for t ∈ [−τ, τ ] and for v ∈ H3 with ϕk (v) ≤ αk, k = 0, 1, 2. Consequently, if v ∈ H3,
then G (·) v ∈ C (R;H3) ∩ C1 (R;L2).
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(vi) For each αk ≥ 0, k = 0, 1, 2, 3 and each τ > 0 there exists a positive number
ω1 = ω1 (α0, α1, α2, α3,τ) such that

(4.31) ϕ4 (G (t) v) ≤ eω1|t|ϕ4 (v)

for t ∈ [−τ, τ ] and for v ∈ H4 with ϕk (v) ≤ αk, k = 0, 1, 2, 3. Consequently, if v ∈ H4,
then G (·) v ∈ C (R;H4)∩C1 (R;H1). In particular, if v ∈ H4 , then u (t, x) = [G (t) v]x,
(t, x) ∈ R× R satisfies the equation (3.1) pointwise on R× R.

Proof. Let v ∈ H2. Since the range condition in Theorem 4.1 is verified for v ∈ H3,
we need to use a density argument. We choose a sequence {vn} in H3, vn → v in H2 as
n→∞. Let ε ∈ (0, 1) and let also α0, α1, α2 > 0 so that

sup
n≥1

ϕk (vn) + ε < αk, k = 0, 1 and e2a

(
sup
n≥1

|ϕ2 (vn)|+ (b+ ε)

)
< α2,

where a = a (α0, α1) and b = b (α0, α1) are numbers as in Lemma 3.3. Applying Theorem
4.1, one gets λ0 > 0 such that to each λ ∈ (−λ0, λ0) and n ≥ 1 there corresponds an
unique vλ,n ∈ K which satisfies

vλ,n − λ (A+B) vλ,n = vn;(4.32)

and

ϕ0 (vλ,n) ≤ ϕ0 (vn) + |λ| ε;(4.33)

ϕ1 (vλ,n) ≤ ϕ1 (vn) + |λ| ε;
ϕ2 (vλ,n) ≤ (1− |λ| a)−1 (ϕ2 (vn) + |λ| (b+ ε)) ;

ϕ3 (vλ,n) ≤ (1− |λ|ω0)
−1 ϕ3 (vn) .

Since, as seen in Proposition 3.1, B is quasidissipative on level sets ofH2, (4.32) implies
|vλ,n − vλ,m| ≤ (1− |λ|ω0)

−1 |vn − vm|, and so vλ,n converges in L2 to some vλ. Since K
is weakly compact in H3, one can extract a subsequence vλ,nk

such that vλ,nk
⇀ vλ in H3.

We now prove that this implies vλ,nk
→ vλ in H2. By (3.4), one obtains

(∇ (vλ,nk
− vλ) ,∇ (vλ,nk

− vλ)) = −
(
vλ,nk

− vλ,∇2 (vλ,nk
− vλ)

)
,

which implies that |∇ (vλ,nk
− vλ)|2 → 0, and therefore vλ,nk

→ vλ in H1. Also,(
∇2 (vλ,nk

− vλ) ,∇2 (vλ,nk
− vλ)

)
= −

(
∇ (vλ,nk

− vλ) ,∇3 (vλ,nk
− vλ)

)
,

from which we get the required H2-convergence of vλ,nk
to vλ.

From (ii) of Proposition 3.1, we see that Avλ,nk
⇀ Avλ and Bvλ,nk

→ Bvλ, and since

vλ,nk
− λ (A+B) vλ,nk

= vnk
,

passing to limit as k →∞ we get

vλ − λ (A+B) vλ = v.
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Moreover, since ϕ0 (vλ,nk
) ≤ ϕ0 (vnk

)+|λ| ε and vnk
→ v in H2, it is seen that ϕ0 (vλ) ≤

ϕ0 (v) + |λ| ε. From (4.33) we also infer that

(1/2) |∇vλ,nk
|2 −

∫ ∞

−∞

∫ vλ,nk
(x)

0

f (ξ) dξdx(4.34)

≤ (1/2) |∇vnk
|2 −

∫ ∞

−∞

∫ vnk
(x)

0

f (ξ) dξdx+ |λ| ε.

Now, since∣∣∣∣∣
∫ ∞

−∞

∫ vλ(x)

vλ,nk
(x)

f (ξ) dξdx

∣∣∣∣∣(4.35)

=

∣∣∣∣∫ ∞

−∞

(∫ 1

0

f (θvλ (x) + (1− θ) vλ,nk
(x)) dθ

)
(vλ (x)− vλ,nk

(x)) dx

∣∣∣∣
≤
∣∣∣∣∫ 1

0

f (θvλ (·) + (1− θ) vλ,nk
(·)) dθ

∣∣∣∣ |vλ − vλ,nk
| ,

and the first factor in the right-hand side is uniformly bounded with respect to k, from
(4.34) we find that

(1/2) |∇vλ|2 −
∫ ∞

−∞

∫ vλ(x)

0

f (ξ) dξdx(4.36)

≤ (1/2) |∇v|2 −
∫ ∞

−∞

∫ v(x)

0

f (ξ) dξdx+ |λ| ε.

Thus, it follows that ϕ1 (vλ) ≤ ϕ1 (v) + |λ| ε. We now try to prove that ϕ2(vλ) ≤
(1 − |λ|a)−1(ϕ2(v) + |λ|(b + ε)). From (3.4), it is seen that (5/6) (f (vλ,nk

) ,∇2vλ,nk
) =

(5/6) (Bvλ,nk
,∇vλ,nk

), and using the continuity of B on level sets we easily obtain that

(4.37) (5/6)
(
f (vλ,nk

) ,∇2vλ,nk

)
→ (5/6)

(
f (vλ) ,∇2vλ

)
as k →∞.

Combining (4.37) and (4.33) we deduce that ϕ2 (vλ) ≤ (1− |λ| a)−1 (ϕ2 (v) + |λ| (b+ ε))
as required. Applying now Theorem 2.1, we conclude that there exists a nonlinear group
G = {G (t) ; t ∈ R} of locally Lipschitz operators on H2 such that G (·) v ∈ C (R;L2) for
each v ∈ H2 and (4.28) is satisfied together with

(4.38) ϕ0 (G (t) v) ≤ ϕ0 (v) and ϕ1 (G (t) v) ≤ ϕ1 (v)

for v ∈ H2 and t ∈ R, and

(4.39) ϕ2 (G (t) v) ≤ ea|t| (ϕ2 (v) + b |t|)

for v ∈ H2 with ϕ0 (v) ≤ α0, ϕ1 (v) ≤ α1 and t ∈ R.
We will now prove that actually G (·) v belongs to C (R;H2) for each v ∈ H2.
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Let v ∈ H2 (R), t ∈ R and let {tn} be a sequence such that tn → t as n → ∞. From
(ii) of Lemma 3.2, (4.38) and (4.39), there is β2 = β2 ({tn} , t) such that |∇2G (tn) v| ≤ β2

for n ≥ 1. Since

|∇G (tn) v −∇G (t) v|2 =
∣∣(∇2G (tn) v −∇2G (t) v,G (tn) v −G (t) v

)∣∣
≤M |G (tn) v −G (t) v| ,

we get that G (·) v ∈ C (R, H1). To show that G(·)v belongs to C(R;H2), we first prove its
continuity with respect to the weak topology of H2. Then we use the exponential growth
condition (4.39) to show the continuity of |∇2G(·)|. The conclusion will then follow from
a strong convergence criterion for uniformly convex spaces. We first see that(

∇2G (tn) v, ψ
)

= − (∇G (tn) v,∇ψ) → − (∇G (t) v,∇ψ)

as n → ∞, for each ψ ∈ C∞
c (R). Since (∇G (t) v,∇ψ) = − (∇2G (t) v, ψ) one obtains

that G (tn) v ⇀ G (t) v in H2 as n → ∞. Moreover, from (4.39) and the group property
of G we obtain

ϕ2 (G (tn) v) = ϕ2 (G (tn − t)G (t) v) ≤ ea|tn−t| (ϕ2 (G (t) v) + b |tn − t|) .

We therefore infer that

(4.40) lim
n→∞

ϕ2 (G (tn) v) ≤ ϕ2 (G (t) v) .

Since G (tn) v ⇀ G (t) v in H2, G (tn) v → G (t) v in H1 and

(5/6)
(
f (G (tn) v) ,∇2G (tn) v

)
= (5/6) (BG (tn) v,∇G (tn) v) ,

we also have

(4.41) lim
n→∞

ϕ2 (G (tn) v) ≥ ϕ2 (G (t) v) .

From (4.40) and (4.41) one obtains that

lim
n→∞

ϕ2 (G (tn) v) = ϕ2 (G (t) v) .

Noting that

ϕ2 (G (tn) v) = (1/2)
∣∣∇2G (tn) v

∣∣+ (5/6)
(
f
(
G (tn) v,∇2G (tn) v

))
= (1/2)

∣∣∇2G (tn) v
∣∣+ (5/6) (BG (tn) v,∇G (tn) v) ,

since G (tn) v → G (t) v in H1 as n→∞, we get

(4.42)
∣∣∇2G (tn) v

∣∣→ ∣∣∇2G (t) v
∣∣ as n→∞.

Since G (tn) v ⇀ G (t) v in H2, (4.42) implies via a strong convergence criterion for
uniformly convex spaces that ∇2G (tn) v → ∇2G (t) v in L2, and so G (tn) v → G (t) v in
H2 as requested. Also, the inequalities in (4.38) imply

ϕ0 (G (t) v) ≤ ϕ0 (v) = ϕ0 (G (−t)G (t) v) ≤ ϕ0 (G (t) v)
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and
ϕ1 (G (t) v) ≤ ϕ1 (v) = ϕ1 (G (−t)G (t) v) ≤ ϕ1 (G (t) v) ,

hence ϕ0 (G (t) v) = ϕ0 (v) and ϕ1 (G (t) v) = ϕ1 (v) for each v ∈ H2.
By Theorems 2.1 and 4.2, each of G (t) maps H3 into itself and (4.32) easily implies

(4.36). Next, let us suppose that v ∈ H3. It is seen that

e−ω0|tn−t|ϕ3 (G (tn) v) ≤ ϕ3 (G (t) v) ≤ eω0|tn−t|ϕ3 (G (tn) v) ,

which implies in turn

(4.43) lim
n→∞

ϕ3 (G (tn) v) = ϕ3 (G (t) v) .

Since (
∇3G (tn) v +∇f (G (tn) v) , ψ

)
= −

(
∇2G (tn) v + f (G (tn) v) ,∇ψ

)
for each ψ ∈ C∞

c (R), using the H2-continuity of G (·) v one obtains that

∇3G (tn) v +∇f (G (tn) v) ⇀ ∇3G (t) v +∇f (G (t) v) as n→∞

and this, together with (4.43), implies

(4.44) ∇3G (tn) v +∇f (G (tn) v) → ∇3G (t) v +∇f (G (t) v) as n→∞.

But ∇f (G (tn) v) = −BG (tn) v → −BG (t) v = ∇f (G (t) v), so

∇3G (tn) v → ∇3G (t) v as n→∞,

and therefore G ∈ C (R;H3) ∩C1 (R;L2). In the same way one can get that, for v ∈ H4,
G ∈ C (R;H4) ∩ C1 (R;H1), and in this further case u (t, x) satisfies the equation (3.1)
pointwise on R× R.

Remark 4.1. It is easily seen that differentiating a solution of (3.1) with respect to t one
reduces its regularity from C (R;H3) to C (R;L2), that is, with three x-derivatives. With
regard to this, it should be mentioned that if the function f in (3.1) is of class C∞ (R)

and satisfies (3.3), then G (·) v ∈
[k/3]⋂
m=0

Cm
(
R;Hk−3m

)
for each v ∈ Hk and for any integer

k ≥ 3. It is also interesting to note that the regularity of the group G = {G (t) ; t ∈ R}
with respect to t is established with the aid of the l.s.c. functionals ϕ2, ϕ3 and ϕ4.

5 Regularized dispersive equations

In this section we establish the existence of nonlinear groups Gµ = {Gµ (t) ; t ∈ R} of
Fréchet differentiable operators on H1 which provide mild solutions to the initial value
problem for nonlinear dispersive equations of the form

ut + (f (u))x + uxxx − µutxx = 0, t, x ∈ R(5.1)
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u (0, x) = u0 (x) , x ∈ R.(5.2)

Here µ > 0, f is merely a nonlinear function of class C1 (R) such that f (0) = 0 and u0

is an initial function given in H1. The convergence of Gµ = {Gµ (t) ; t ∈ R} to the group
G = {G (t) ; t ∈ R} obtained in Theorem 4.2 will be also discussed in the next section.

Equation (5.1) is regarded as a pseudoparabolic regularization of the generalized K-dV
equation (3.1). An equation related to (5.1) is the long wave equation

(5.3) ut + ux + uux − uxxt = 0,

which was proposed by Benjamin, Bona and Mahony in [2] as a substitute for K-dV
equation. A derivation of the equation (5.3) was also given in Benjamin [3]. Since then,
many works have been devoted to the study of equations of type (5.3) (we refer the reader
to, for instance Iwamiya, Oharu and Takahashi [10], Medeiros and Menzala [15], Medeiros
and Miranda [16]). See also Avrin and Goldstein [1], Goldstein, Kajikya and Oharu [9]
for a discussion on the equation (5.3) in several space variables, Tsutsumi and Mukasa
[24] for other parabolic regularizations of (3.1), Bona and Chen [4], Bona and Smith
[5], Takahashi [23] for problems related to (5.1). Also, initial-boundary value problems
for a class of equations which significantly generalize (5.3) were treated by Oharu and
Takahashi in [19] using nonlinear operator theory.

In order to derive a semilinear evolution equation in L1 which is equivalent to (5.1),
we begin by defining some necessary operators and stating their properties.

Let ∆ be the one-dimensional Laplace operator defined by ∆v = ∇2v for v ∈ H2. It
is easy to see that I − µ∆ has a bounded inverse (I − µ∆)−1 on L2 which satisfies the
relation

(5.4)
(
(I − µ∆)−1 v, w

)
=
(
v, (I − µ∆)−1w

)
, for v, w ∈ L2.

Moreover, since (3.4) implies(
(I − µ∆)−1∇v, v

)
= −

(
(I − µ∆)−1 v,∇v

)
for v ∈ H1,

from (5.4) one may deduce that

(5.5)
(
(I − µ∆)−1∇v, v

)
= 0 for v ∈ H1.

We introduce a densely defined and closed linear operator Aµ in L2 by

(5.6) Aµv = (1/µ)
(
∇v − (I − µ∆)−1∇v

)
for v ∈ H1

and a nonlinear operator Bµ from H1 into H2 by

(5.7) Bµv = − (I − µ∆)−1∇f (v) for v ∈ H1.

Further, we define new scalar products on H1 and H2 by

(u, v)1,µ = (u, v) + µ(∇u,∇v) for u, v ∈ H1,
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respectively

(u, v)2,µ = (u, v) + 2µ(∇u,∇v) + µ2(∇2u,∇2v) for u, v ∈ H2,

and we denote by |·|1,µ and |·|2,µ the norms induced on H1, respectively on H2, by these
scalar products.

Let now k be an arbitrary positive integer. It is easy to see that Aµ maps Hk+1 into
Hk, and

(5.8)
(
∇kAµu,∇ku

)
= (1/µ)

(
∇k+1u,∇ku

)
− (1/µ)

(
(I − µ∆)−1∇k+1u,∇ku

)
for u ∈ Hk+1. Therefore, from (5.5) and (5.8) it follows that

(
∇kAµu,∇ku

)
= 0 for

u ∈ Hk+1. Hence (Aµu, u)k = 0 for each v ∈ Hk+1, and so Aµ is the generator of a
(C0)-group Tµ = {Tµ (t) ; t ∈ R} such that each of Tµ (t) maps Hk into itself and satisfies
the relation

|Tµ (t) v|k = |v|k for each t ∈ R and v ∈ Hk.

Also, one may see that

(5.9)
∣∣(I − µ∆)−1w

∣∣
2,µ

= |w| for w ∈ H2.

Now equation (5.1) can be rewritten as a semilinear evolution equation in
(
H1, |·|µ

)
of

the form

(5.10) (d/dt)uµ (t) = (Aµ +Bµ)uµ (t) , t ∈ R.

Our purpose is to construct the solution operator groups for (5.10) on H1 using the
generation theorem stated in Section 2. To this goal, we need to establish further regu-
larity properties of the operators Bµ, as will be done in the next proposition.

Proposition 5.1. Let µ in (0, 1). For the nonlinear operator Bµ, the following statements
hold:

(i) For each α ≥ 0 there is a number ω = ω (α, µ) ≥ 0 such that

|Bµv −Bµw|1,µ ≤ ω |v − w|

for v, w ∈ H1 with |v|1,µ ≤ α and |w|1,µ ≤ α.

(ii) Bµ is continuously Fréchet differentiable on H1 and its Fréchet derivative dBµv at
v ∈ H1 is given by

dBµ (v)w = −∇
(
(I − µ∆)−1 (f ′ (v)w)

)
for w ∈ H1.

Proof. Let α ≥ 0 and set

ω = µ−1/2 sup
{
|f ′ (v)|L∞ ; v ∈ H1, |v|1,µ ≤ α

}
.

By (3.4) and the definition of Bµ, we see that

|Bµv −Bµw|2µ = (Bµv −Bµw,Bµv −Bµw)− µ (∆ (Bµv −Bµw) , Bµv −Bµw)
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= − (∇f (v)−∇f (w) , Bµv −Bµw)

= (f (v)− f (w) ,∇ (Bµv −Bµw)) .

Hence |Bµv −Bµw|21,µ ≤ w|v − w|µ1/2 |∇(Bµv −Bµw)|, from which the desired estimate
follows. To get (ii), we note that∣∣Bµ (v + w)−Bµv +∇ (I − µ∆)−1 (f ′ (v)w)

∣∣2
1,µ

= −
(
Bµ (v + w)−Bµ (v) +∇

(
(I − µ∆)−1) (f ′ (v)w) ,∇f (v + w)−∇f (v)

)
−
(
∇
(
Bµ (v + w)−∇Bµv +∇ (I − µ∆)−1 (f ′ (v)w)

)
, f ′ (v)w

)
=
(
∇
(
Bµ (v + w)−Bµ (v)−∇

(
(I − µ∆)−1) (f ′ (v)w)

)
, f (v + w)− f (v)− f ′ (v)w

)
,

which implies∣∣Bµ (v + w)−Bµv −∇ (I − µ∆)−1 (f ′ (v)w)
∣∣
1,µ
≤ µ−1/2 |f (v + w)− f (v)− f ′ (v)w| .

Therefore,
∣∣Bµ (v + w)−Bµv −∇ (I − µ∆)−1 (f ′ (v)w)

∣∣
1,µ

= o
(
|w|1,µ

)
, and so (ii) is

proved.

We are now in position to state the main result of this section.

Theorem 5.1. For each µ > 0 there exists a nonlinear group Gµ = {Gµ (t) ; t ∈ R} of
locally Lipschitz operators on H1 which satisfies the properties given below:

(i) If v ∈ H1, then Gµ (·) v ∈ C (R;H1) ∩ C1 (R;L2) and

Gµ (t) v = Tµ (t) v +

∫ t

0

Tµ (t− s)BµGµ (s) vds,

for t ∈ R and v ∈ H1.

(ii) If v ∈ H2, then Gµ (·) v ∈ C (R;H2) ∩ C1 (R;H1) ∩ C2 (R;L2) and satisfies the
equation in C (R;H1)

(d/dt)Gµ (t) v = (Aµ +Bµ)Gµ (t) v for t ∈ R.

(iii) Each of Gµ (t) is continuously Fréchet differentiable on H1.

(iv) ϕ0,µ (Gµ (t) v) = ϕ0,µ (v) for t ∈ R and v ∈ H1, where the functional ϕ0,µ is defined
by

ϕ0,µ (v) = |v|1,µ for v ∈ H1.

(v) ϕ1 (Gµ (t) v) = ϕ1 (v) for t ∈ R and v ∈ H1, where ϕ1 is the functional defined by
(3.21).

Proof. One may show that Aµ +Bµ satisfies the following range condition

For each α ≥ 0 there is a number λµ = λµ (α) > 0 such that for any v ∈ H1 with
|v|1,µ ≤ α and for any λ ∈ (−λµ, λµ) there is an element vλ ∈ H1 such that

vλ − λ (Aµ +Bµ) vλ = v,

25



ϕ0,µ (vλ) ≤ ϕ0,µ (v) + |λ| ε,
ϕ1 (vλ) ≤ ϕ1 (v) + |λ| ε.

The proof is similar to that of Theorem 6.1, and the desired result follows easily from
Theorem 2.1 and Proposition 5.1.

Remark 5.1. Note that the differentiation of a solution reduces its Sobolev regularity
from C (R;H1) to C (R;L2), that is, with one x-derivative, and so if f ∈ C∞ (R), then

Gµ (·) v ∈
k⋂

m=0

Cm
(
R;Hk−m

)
for each v ∈ Hk and for each integer k ≥ 1.

6 A convergence theorem for nonlinear groups

In the previous sections we have obtained the existence of the nonlinear groups G =
{G (t) ; t ≥ 0} and Gµ = {Gµ (t) ; t ≥ 0} of locally Lipschitz operators on H2, respectively
on H1, which provides mild solutions to the initial value problems for the generalized
K-dV equation (3.1), respectively to its pseudoparabolic regularization (5.1). Here we
discuss the convergence of Gµ to G. For this purpose, we assume that the nonlinear
function f is of class C3 (R) and satisfies (3.3).

In what follows ϕk,µ, k = 0, 1, 2, 3 denote the functionals

ϕ0,µ (v) = |v|1,µ =
(
|v|2 + µ |∇v|2

)1/2
, v ∈ H1;(6.1)

ϕ1,µ (v) = ϕ1 (v) = (1/2) |∇v|2 −
∫ ∞

−∞

∫ v(x)

0

f (ξ) dξdx, v ∈ H1;

ϕ2,µ (v) = (1/2)
∣∣∇2v

∣∣2 + (µ/12)
∣∣∇3v

∣∣2 + (5/6)
(
f (v) ,∇2v

)
− (5µ/12)

(
f ′ (v) ,

(
∇2v

)2)
, v ∈ H3;

ϕ3,µ (v) = ϕ3 (v) =
∣∣∇3v +∇f (v)

∣∣ , v ∈ H3.

As done in Section 3, we first establish the relation between ϕk,µ-boundedness and
norm boundedness.

Lemma 6.1. Let µ ∈ (0, 1). For each α0, α1, α2 ≥ 0, there is β2 = β2 (α0, α1, α2) ≥ 0,
independent of µ, such that if v ∈ H3 and ϕ0,µ (v) ≤ α0, ϕ1,µ (v) ≤ α1, ϕ2,µ (v) ≤ α2, then
|∇2v| ≤ β2 and µ1/2 |∇3v| ≤ β2.

Proof. Let µ ∈ (0, 1), α0, α1, α2 ≥ 0 and v ∈ H3 such that ϕ0,µ (v) ≤ α0, ϕ1,µ (v) ≤ α1,
ϕ2,µ (v) ≤ α2. Then, in a way similar to that used to establish Lemma 3.2, we see that
there are numbers β0 = β0 (α0) ≥ 0 and β1 = β1 (α0, α1) ≥ 0 such that |v| ≤ β0 and
|∇v| ≤ β1. We further note that

(6.2) C
∣∣∇2v

∣∣2 ≤ (1/2)
(
C2 |∇v|2 +

∣∣∇3v
∣∣2) for each v ∈ H3 and C ∈ R+.

Since ϕ2,µ (v) ≤ α2, (6.1) implies

(1/2)
∣∣∇2v

∣∣2 + (µ/12)
∣∣∇3v

∣∣2
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≤ α2 + (5/6)
(
f ′ (v) , (∇v)2)+ (5µ/12)

(
f ′ (v) ,

(
∇2v

)2)
.

Since |w|L∞ ≤ |w|1 for each w ∈ H1, it follows that there is γ1 = γ1 (α0, α1) ≥ 0 such
that |v|L∞ ≤ γ1. We then define

C = C (f ′, α0, α1) = sup {|f ′ (x)| ; |x| ≤ γ1} .

Therefore, (6.1) and (6.2) lead us to the following estimate

(1/2)
∣∣∇2v

∣∣2 + (µ/12)
∣∣∇3v

∣∣2 ≤ α2 + (5/6) C |∇v|2 + (5µ/12) C
∣∣∇2v

∣∣2
≤ α2 + (5/6) C |∇v|2 + (5µ/72)

(
9C 2 |∇v|2 +

∣∣∇3v
∣∣2) .

Hence
(1/2)

∣∣∇2v
∣∣2 + (µ/72)

∣∣∇3v
∣∣2 ≤ α2 + (5/24) C β2

1 (4 + 3C )

and so Lemma 6.1 is proved.

Since we aim to apply Theorem 2.1, we now establish the quasidissipativity of the
operators Bµ on level sets with respect to ϕk, k = 0, 1, 2.

Lemma 6.2. Let µ ∈ (0, 1). For each α0, α1, α2 ≥ 0 there exists a number ω0 =
ω0 (α0, α1, α2), independent of µ, such that

(6.3)
∣∣∣(Bµv −Bµw, v − w)1,µ

∣∣∣ ≤ ω0 |v − w|2

and

(6.4)
∣∣∣(Bµv −Bµw, v − w)2,µ

∣∣∣ ≤ ω0 |v − w|2

for v, w ∈ H3 with ϕk,µ (v) ≤ αk and ϕk,µ (w) ≤ αk, k = 0, 1, 2.

Proof. Let α0, α1, α2 ≥ 0 and v, w ∈ H3 so that ϕk,µ (v) ≤ αk and ϕk,µ (w) ≤ αk,
k = 0, 1, 2. It is clear that

(Bµv −Bµw, v − w)1,µ = ((I − µ∆) (Bµv −Bµw) , v − w)

= (f (v)− f (w) ,∇ (v − w))

and

(Bµv −Bµw, v − w)2,µ

= ((I − µ∆) (Bµv −Bµw) , v − w)− µ
(
(I − µ∆) (Bµv −Bµw) ,∇2 (v − w)

)
= (f (v)− f (w) ,∇ (v − w)) + µ

(
∇ (f (v)− f (w)) ,∇2 (v − w)

)
,

from which we easily get the required conclusion.

We next prove the range condition for Aµ +Bµ.
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Theorem 6.1. Let v ∈ H3, ε > 0, and suppose that α0, α1, α2 ≥ 0 are chosen so that
ϕ0,µ (v) + ε < α0, ϕ1,µ (v) + ε < α1 and e2a {|ϕ2,µ (v)|+ 1 + ε} < α2 for all µ ∈ (0, 1).
Let a = a (α0, α1), b = b (α0, α1) be positive numbers as in Lemma 3.3, and let ω0 =
ω0 (α0, α1, α2) be a positive number as in Lemma 6.2. Then there are numbers µ0 =
µ0 (α0, α1, α2) > 0 and λ̂0 = λ̂0 (|v|3 , ε), 0 < λ̂0 ≤ min {1, 1/2a, 1/ω0} such that for each

µ ∈ (0, µ0) and each λ ∈
(
−λ̂0, λ̂0

)
there exists an unique element vλ,µ ∈ H3 which

satisfies

vλ,µ − λ (Aµ +Bµ) vλ,µ = v,(6.5)

and

ϕ0,µ (vλ,µ) ≤ ϕ0,µ (v) + |λ| ε,(6.6)

ϕ1,µ (vλ,µ) ≤ ϕ1,µ (v) + |λ| ε,
ϕ2,µ (vλ,µ) ≤ (1− |λ| a)−1 {ϕ2,µ (v) + |λ| (b+ 1 + ε)} ,
ϕ3,µ (vλ,µ) ≤ (1− |λ| a)−1 ϕ3,µ (v) .

Proof. The proof is similar to that of Theorem 4.1. We first choose βk > 0, k = 0, 1, 2,
so that {

w ∈ H3;ϕk,µ (w) ≤ αk, k = 0, 1, 2
}
⊂
{
w ∈ H3;

∣∣∇kw
∣∣ ≤ βk, k = 0, 1, 2

}
for µ ∈ (0, 1), and |∇3v|+ 2L0 ≤ β3, where

L0 = sup
{
|Bw| ;w ∈ H1, |w| ≤ β0, |∇w| ≤ β1

}
.

Denote also L1, L2 as in the proof of Theorem 4.1 and

M1 = sup {|f ′(w)|L∞ ; |w| ≤ β0, |∇w| ≤ β1} ,(6.7)

M2 = sup {|f ′′(w)|L∞ ; |w| ≤ β0, |∇w| ≤ β1} .(6.8)

It follows that there exists a positive number δ = δ(|v|3, ε) such that if w ∈ H3, |w−v| < δ
and

∣∣∇kw
∣∣ ≤ max

{
βk,
∣∣∇kv

∣∣+ Lk

}
, k = 0, 1, 2, then the inequalities in (4.7) are satisfied.

Define
λ̂0 = min {1, δ/β3, ε/(2β3), 1/ω0, 1/(2a)} ,

and let also µ0 = µ0(α0, α1, α2) be a positive number such that 5µ0M1/6 ≤ 1 and

aµ0(4 + 25M2
1β

3
2)/48 + 5M2β

2
2µ

1/2
0 (β2 + µ

1/2
0 L0) ≤ 1,

where ω0 is a positive number as in Lemma 6.2.

For each λ ∈
(
−λ̂0, λ̂0

)
, λ 6= 0 and µ ∈ (0, µ0), we define a subset Kλ,µ of H3 by

(6.9) Kλ,µ =
{
w ∈ H3; |v − w|2,µ ≤ |λ|β3,

∣∣∇kw
∣∣ ≤ βk, k = 0, 1, 2, 3

}
and an operator Γλ,µ : Kλ,µ → H3 by

(6.10) Γλ,µw = (I − λAµ)−1 (v + λBµw) for w ∈ Kλ,µ.
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Let now w ∈ Kλ,µ and write z = Γλ,µw for simplicity. We see that

(6.11) z = v + λAµz + λBµw.

Since

(6.12) |z − v|2,µ = |(I − µ∆) (z − v)|2 ,

it follows that

|z − v|2,µ = λ ((I − µ∆) (z − v) , Az +Bw)

= −λ ((I − µ∆) v, Az) + λ ((I − µ∆) (z − v) , Bw) .

Hence

|z − v|2,µ = λ (Av, (I − µ∆) z) + λ ((I − µ∆) (z − v) , Bw)

= λ (Av, (I − µ∆) (z − v)) + λ ((I − µ∆) (z − v) , Bw)

= λ ((I − µ∆) (z − v) , Av +Bw) ,

and by virtue of (6.12), we deduce the estimate

(6.13)
(
|z − v|2 + 2µ |∇ (z − v)|2 + µ2

∣∣∇2 (z − v)
∣∣2)1/2

≤ |λ|
(∣∣∇3v

∣∣+ L0

)
≤ |λ| β3.

Since |z − v|2,µ = |(I − µ∆)Aµz|2, invoking Minkowski’ s inequality we obtain∣∣∇3z
∣∣ = |Aµz|2,µ(6.14)

≤ |λ|−1
(
|z − v|2,µ + |Bµw|2,µ

)
≤
∣∣∇3v

∣∣+ 2L0 ≤ β3.

Since |Bµw| ≤ |Bw| for w ∈ H1, the estimates
∣∣∇kz

∣∣ ≤ ∣∣∇kv
∣∣+ λLk, k = 0, 1, 2 are

obtained as in the proof of Theorem 4.1. By (5.6), (5.7) and (6.11), we see that

(z − v, z) + µ (∇ (z − v) ,∇z) = λ (Az +Bw, z) .

Therefore, since (Az, z) = (Bz, z) = 0, it follows that

(z, z) + µ (∇z,∇z) = (v, z) + µ (∇v,∇z) + λ (Bw −Bz, z) .

In view of (4.7), we conclude that

(6.15) ϕ0,µ (z) ≤ ϕ0,µ (v) + |λ| ε.

We now prove the second inequality in (6.6). Noting that∣∣∣∣∣
∫ ∞

−∞

∫ z(x)

v(x)

f (ξ) dξdx−
∫ ∞

−∞
f (w (x)) (z (x)− v (x)) dx

∣∣∣∣∣
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≤
∣∣∣∣∫ 1

0

f (θv + (1− θ) z) dθ − f (w)

∣∣∣∣ |z − v| ,

from (6.13) we obtain the inequality

(∇z,∇z)−
∫ ∞

−∞

∫ z(x)

0

f (ξ) dξdx ≤ (∇v,∇z)−
∫ ∞

−∞

∫ v(x)

0

f (ξ) dξdx+ |λ| ε,

and hence

(6.16) ϕ1,µ (z) ≤ ϕ1,µ (v) + |λ| ε.

We next show that

(6.17) ϕ2,µ (z) ≤ (1− |λ| a)−1 {ϕ2,µ (v) + |λ| (b+ 1 + ε)} .

The application of the Main Value Theorem implies(
f(z),∇2z

)
−
(
f(v),∇2v

)
=
(
f(z),∇2z

)
−
(
f(v),∇2z

)
+
(
f(v),∇2z

)
−
(
f(v),∇2v

)
=
(
f ′(w1)∇2z, z − v

)
− (∇Bv, z − v)

=
(
(f ′(w1)− f ′(z))∇2z, z − v

)
+
(
f ′(z)∇2z, z − v

)
+ (∇Bw −∇Bv, z − v)− (∇Bw, z − v) ,

where w1(·) = θ(·)z(·) + (1− θ(·))v(·). In view of (4.23), it is easy to check that(
f ′(z)∇2z, z − v

)
−µ
(
f ′(z)∇2z,∇2z −∇2v

)
=
(
f ′(z)∇2z, λ(Az +Bw)

)
= (−λ/5)

[
5
(
f ′(z)∇2z,∇3z

)
−
(
f ′′′(z) (∇z)3 ,∇2z

)]
− (λ/5)

[(
f ′′′(z) (∇z)3 ,∇2z

)
+ 5

(
f ′(z)∇2z, f ′(w)∇w

)]
.

Furthermore, from (3.4) and (6.11) we obtain

(∇Bw, z − v) = λ
(
∇2Bµw,∇2z

)
=
(
∇2z,∇2z

)
−
(
∇2z,∇2v

)
.

Since (∇Aµz, Az) = 0, this implies

λµ
(
∇3Bµw,∇3z

)
= −

[(
∇2z,∇2z

)
−
(
∇2z,∇2v

)]
+ λ

(
∇Bw,∇3z

)
.

We are now ready to prove the estimate (6.17). By virtue of (4.23) and Lemma 3.3, we
obtain

(1− |λ| a)ϕ2,µ(z) ≤ ϕ2,µ(v) + |λ| (b+ ε) + (5µ/12)
(
f ′(z),

(
∇2z −∇2v

)2)
− (1/2)

∣∣∇2z −∇2v
∣∣2 + (5µ/12)

(
f ′(v)− f ′(z),

(
∇2v

)2)
− (µ/6)

∣∣∇3z −∇3v
∣∣2 + (µ/12) |λ| a

[
−
∣∣∇3z

∣∣2 + 5
(
f ′(z),

(
∇2z

)2)]
.
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From this inequality we can easily get

(1− |λ| a)ϕ2,µ(z) ≤ ϕ2,µ(v) + |λ| (b+ ε) + (1/12) |λ| aµ
[
−
∣∣∇3z

∣∣+ 5
(
f ′(z),

(
∇2z

)2)](6.18)

+ (5/12)λµ

(∫ 1

0

f ′′ (θv + (1− θ) z) dθ
(
∇2v

)2
, Aµz +Bµw

)
.

From (6.18) and (6.13) one may see that

µ

∣∣∣∣(∫ 1

0

f ′′ (θv + (1− θ) z) dθ
(
∇2v

)2
, Aµz +Bµw

)∣∣∣∣
≤M2β

2
2µ
(∣∣∇3v

∣∣+ L0

)
≤M2β

2
2µ

1/2
(
β2 + µ1/2L0

)
.

Using (6.18), we obtain

5
(
f ′(z),

(
∇2z

)2) ≤ 5M1

∣∣∇2z
∣∣2
L4

≤ 5
√
M1

∣∣∇3z
∣∣1/2 ∣∣∇2z

∣∣3/2

≤ (1/2)
(
4
∣∣∇3z

∣∣+ 25/2M2
1

∣∣∇2z
∣∣3)

≤
∣∣∇3z

∣∣2 + 1 + 25/4M2
1

∣∣∇2z
∣∣3 ,

from which we get the required conclusion.
Thus it is shown that (6.13) is verified, and so Γλ,µv ∈ Kλµ. The conclusion of this

theorem is obtained in a manner similar to that of Theorem 4.1, noting that the last
inequality in (6.5) follows from Lemma 6.2 and from relation (5.9).

By virtue of Theorems 2.1 and 6.1 one obtains a result on the regularity of the groups
Gµ = {Gµ (t) ; t ∈ R}.

Theorem 6.2. Let µ ∈ (0, 1). Let Gµ = {Gµ (t) ; t ∈ R} be the nonlinear group of
locally Lipschitz operators obtained in Theorem 5.1. In addition to the properties stated
in Theorem 5.1, we have the following

(i) Gµ (·) v ∈
3⋂

m=0

Cm (R;H3−m) for v ∈ H3 and Gµ (·) v ∈
4⋂

m=0

Cm (R;H4−m) for v ∈

H4. In particular, if v ∈ H4, then u (t, x) = [Gµ (t) v] (x) satisfies equation (5.1) pointwise
on R× R.

(ii) The exponential formula localized with respect to {ϕk,µ}k=0,1,2

Gµ (t) v = H2- lim
n→∞

(I − (t/n) (Aµ +Bµ))−n v

holds for t ∈ R and the convergence is uniform on each bounded subinterval of R.
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(iii) For each α0, α1, α2 ≥ 0 and τ > 0, there are numbers â = â (α0, α1) > 0, b̂ =
b̂ (α0, α1) > 0, ω̂0 = ω̂0 (α0, α1, α2, τ) and µ0 = µ0 (α0, α1, α2, τ) such that:

(iii.1) ϕ2,µ (Gµ (t) v) ≤ eâ|t|
(
ϕ2,µ (v) + b̂ |t|

)
,

for µ ∈ (0, µ0), t ∈ [−τ, τ ] and for v ∈ H3 with ϕk,µ (v) ≤ αk, k = 0, 1, 2.

(iii.2) ϕ3 (Gµ (t) v) ≤ eω̂0|t|ϕ3 (v),

for µ ∈ (0, µ0), t ∈ [−τ, τ ] and for v ∈ H3 with ϕk,µ (v) ≤ αk, k = 0, 1, 2

(iii.3) |Gµ (t) v −Gµ (t)w|µ ≤ eω̂0|t| |v − w|µ,
for µ ∈ (0, µ0), t ∈ [−τ, τ ] and for v ∈ H3 with ϕk,µ (v) ≤ αk, k = 0, 1, 2 and ϕk,µ (w) ≤
αk, k = 0, 1, 2.

We are now in position to prove the convergence theorem

Theorem 6.3. The following statements hold:

(i) (I − λ (A+B))−1 v = H2- lim
n→∞

(I − λ (Aµ +Bµ))−1 v

for v ∈ H3 and for λ ∈ R with |λ| < min
{
λ0 (|v|3 , ε) , λ̂0 (|v|3 , ε)

}
, where ε > 0, λ0 =

λ0 (|v|3 , ε) is the number given in Theorem 2.1 and λ̂0 = λ̂0 (|v|3 , ε) is the number given
in Theorem 6.1.

(ii) If v ∈ H2, vµ ∈ H3, vµ → v in H2 as µ → 0 and µ |∇3vµ|2 ≤ M as µ → 0 for
some M ≥ 0, then

G (t) v = H1-lim
µ→0

Gµ (t) vµ for t ∈ R

and the convergence is uniform on each bounded subinterval of R.
If in particular v ∈ H3, then

G (t) v = H1-lim
µ→0

Gµ (t) v for t ∈ R

and the convergence is uniform on each bounded subinterval of R.

Proof. (i) Let v ∈ H3, ε > 0 and let λ ∈ R be such that |λ| < min
{
λ0, λ̂0

}
. If we

write vλ = (I − λ (A+B))−1 v and vλ,µ = (I − λ (Aµ +Bµ))−1 v, then vλ satisfies (4.1)
and vλ,µ makes sense and satisfies (6.5) for µ > 0 sufficiently small. It is obvious that
ϕk,µ (vλ) → ϕk (vλ) as µ→ 0+, for k = 0, 1, 2. Therefore, we see from Lemma 6.2 that

|((Aµ +Bµ) vλ,µ − (Aµ +Bµ) vλ, vλ,µ − vλ)(6.19)

+ 2µ (∇ (Aµ +Bµ) vλ,µ −∇ (Aµ +Bµ) vλ,∇ (vλ,µ − vλ))|
= |(Bµvλ,µ −Bµvλ, vλ,µ − vλ) + µ (∇Bµvλ,µ −∇Bµvλ,∇ (vλ,µ − vλ))|
≤ ω̂0 |vλ,µ − vλ|2 .

An easy computation yields

λ
(
(Aµ +Bµ) vλ − (A+B) vλ, vλ,µ − vλ − µ∇2 (vλ,µ − vλ)

)
(6.20)
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= λ ((Aµ +Bµ) vλ − (Aµ +Bµ) vλ,µ, vλ,µ − vλ)

+ µ (∇ (Aµ +Bµ) vλ −∇ (Aµ +Bµ) vλ,µ,∇ (vλ,µ − vλ))

+ |vλ,µ − vλ|2 + µ |∇ (vλ,µ − vλ)|2 ,

Therefore, from (6.19) and (6.20) we obtain

(1− |λ| ω̂0) |vλ,µ − vλ|2(6.21)

≤ |λ| |(Aµ +Bµ) vλ − (A+B) vλ|
∣∣vλ,µ − vλ − µ∇2 (vλ,µ − vλ)

∣∣ .
Since (Aµ +Bµ) vλ → (A+B) vλ in L2 as µ → 0+ and lim

µ↓0
|vλ,µ|3 < ∞, it follows

that vλ,µ → vλ in L2 as µ → 0+. Noting that |∇w| ≤ |w|1/2 |∇2w|1/2
and |∇2w| ≤

|w|1/3 |∇3w|2/3
for w ∈ H3, we conclude that vλ,µ → vλ in H2 as µ→ 0+. Thus assertion

(i) is proved.
We now prove (ii). If v ∈ H3, then the H2-convergence of Gµ (t) v to G (t) v follows

easily.
If v ∈ H2, we construct {vµ} ⊂ H3, vµ → v as µ → 0 and µ |∇3vµ|2 ≤ M for some

M ≥ 0. Let also {vλ} ⊂ H3 such that vλ → v as λ → 0 and λ |∇3vλ|2 ≤ M1 for some
M1 ≥ 0. Then

|Gµ (t) vµ −G (t) v|µ ≤ |G (t) v −G (t) vλ|µ + |G (t) vλ −Gµ (t) vλ|µ
+ |Gµ (t) vλ −Gµ (t) vµ|µ

≤ |G (t) v −G (t) vλ|1 + |G (t) vλ −Gµ (t) vλ|1
+ eω̂0|t| |vλ − vµ|µ

if ϕk,µ (vλ) ≤ αk, ϕk,µ (vµ) ≤ αk for each k = 0, 1, 2.
From the above relation it is seen that Gµ (t) vµ → G (t) v in L2 as µ → 0. We also

see that

ϕ0,µ (Gµ (t) vµ) ≤ ϕ0,µ (vµ)

ϕ1,µ (Gµ (t) vµ) ≤ ϕ1,µ (vµ)

ϕ2,µ (Gµ (t) vµ) ≤ eâ|t|
(
ϕ2,µ (vµ) + b̂ |t|

)
and so ϕk,µ (Gµ (t) vµ) ≤ γk, for some γk ∈ R, k = 0, 1, 2 and t ∈ [−τ, τ ], τ > 0. In view of
this, there exists β > 0 such that |∇2Gµ (t) vµ| ≤ β for each µ > 0 and t ∈ [−τ, τ ]. Since

|∇ (Gµ (t) vµ −G (t) v)|2 ≤
∣∣∇2Gµ (t) vµ −∇2G (t) v

∣∣ |Gµ (t) vµ −G (t) v|

we have that Gµ (t) vµ → G (t) v in H1 as µ→ 0, which finishes the proof.
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