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Abstract. Let X be a real Banach space, let A : D(A) ⊂ X → X
be the generator of a (C0)-contraction semigroup on X and let B :
D ⊂ [0, T )×X → X be a continuous operator. Under a combination
of Pavel’s subtangential condition, a semilinear stability condition
defined in terms of a uniqueness function w : [0, T ) × R → R and
suitable connectedness and closedness asumptions on the domain D
of the operator B, we prove the global existence of the mild solution
to the equation u′ = Au + B(t, u). In our setting, no dissipativity
property is assumed for the operator B.

1. Introduction. Statement of the main result

Let X be a real Banach space with norm |·|. We define the semi-inner
products [·, ·] − and [·, ·]+ on X by [x, y]− = limh↑0 (|x + hy| − |x|) /h, re-
spectively by [x, y]+ = limh↓0 (|x + hy| − |x|) /h. Given r > 0 and (t, x) ∈
R×X, we define Sr (t, x) = {(s, y) ∈ R×X; |t− s| ≤ r and |y − x| ≤ r}.
For x ∈ X and S ⊂ X, we also define the distance between x and S by
d (x, S) = inf {|y − x| ; y ∈ S} .

We consider the semilinear problem{
u′(t) = Au (t) + B(t, u (t)), 0 ≤ s < t < T ≤ +∞;

u(s) = u0.
(SP;s, u0)

It is assumed that A and B satisfy the following hypotheses:

(A) A generates a (C0)-contraction semigroup T = {T (t); t ≥ 0} on X;
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(B) B : D → X is a continuous operator,

D being a subset of [0, T )×X which satisfies hypothesis (D) below:

(D) a) D (t) = {x ∈ X; (t, x) ∈ D} 6= ∅ for all t ∈ [0, T );
b) If (tn, xn) ∈ D, tn ↑ t in [0, T ) and xn → x in X as n → ∞, then

(t, x) ∈ D;
c) D is connected.

Given a function w : [0, T )× R → R, it is said that w is a uniqueness
function if it satisfies the following condition:

(U) w (t, 0) = 0 for t ∈ [0, T ) and r ≡ 0 is the unique solution of the
initial value problem{

r′(t) = w(t, r(t)), 0 < t < T ;

r(0) = 0.

We also assume that Pavel’s subtangential condition is satisfied, that
is,

lim inf
h↓0

(1/h)d (T (h) x + hB (t, x) , D (t + h)) = 0,

for all (t, x) ∈ D, (ST)

together with the semilinear stability condition

lim inf
h↓0

(1/h)(|T (h) (x− y) + h (B (t, x)−B (t, y))| − |x− y|)

≤ w (t, |x− y|) , for all (t, x) , (t, y) ∈ D, (S)

where w is a continuous and separately nondecreasing uniqueness func-
tion.

The semilinear stability condition (S) was first employed (for B(t, x) ≡
B(x) and w (t, x) ≡ wx) by Iwamiya, Oharu and Takahashi in [4].
It is possible to prove, using essentially the same argument as in [4,
Proposition 3.1], that if (ST) holds and [B (t, x)−B (t, y) , x− y]− ≤
w (t, |x− y|) for all (t, x), (t, y) ∈ D (that is, B is dissipative with re-
spect to a uniqueness function w), then (S) is satisfied for the same choice
of uniqueness function w. Also, if (S) holds, it may be shown that, for
all (t, x) , (t, y) ∈ D such that x, y ∈ D (A),

lim
h↓0

(1/h)(|T (h) (x− y) + h (B (t, x)−B (t, y))| − |x− y|)

= [x− y, (Ax + B (t, x))− (Ay + B (t, y))]+ ,
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that is, the semilinear operator A + B is strongly quasidisspative with
respect to the uniqueness function w. See [4, Proposition 3.2] for a similar
result regarding the autonomous case.

Let I be a subinterval of [0, T ), I = [s, c] or I = [s, c). A continuous
function from I into X is said to be a mild solution for (SP;s, u0) on I if
it satisfies

u (t) = T (t− s) u0 +

∫ t

s

T (t− ξ) B (ξ, u (ξ)) dξ for all t ∈ I.

Our main result may now be stated as follows.

Theorem 1.1. Suppose that conditions (A), (B), (D) are satisfied, to-
gether with the subtangential condition (ST) and the semilinear stability
condition (S), and that w is a continuous, separately nondecreasing func-
tion which satisfies (U). Then for each (s, u0) ∈ D the semilinear problem
(SP;s, u0) has a unique mild solution u (·; s, u0) on [s, T ). Moreover, for
any (s, u0) and (s, u0) ∈ D and ξ ∈ [s, τ(s, |u0 − u0|)), one has

|u (ξ; s, u0)− u (ξ; s, u0)| ≤ m (ξ; s, |u0 − u0|) ,

where m(·; s, x) is the maximal solution of the initial value problem{
r′(t) = w(t, r(t)), s < t < T ;

r(s) = x

and [s, τ(s, |u0 − u0|)) is its maximal interval of existence.

We briefly outline the main points of our argument. First, our argu-
ment involves the construction of discrete schemes consistent with our
semilinear problem. In order to make full use of our hypotheses, we
investigate the subtangential condition (ST) and show that it holds uni-
formly in a certain sense. Then, given a small parameter ε, we con-
struct a time-discretizing sequence (ti)0≤i≤N and a solution-discretizing
sequence (xi)0≤i≤N enjoying a number of fundamental quantitative prop-
erties. These sequences are then used to define the corresponding ap-
proximate solution uε as a piecewise continuous function.

In order to estimate the difference between two approximate solutions
corresponding to different small parameters ε and ε̂, we establish a lemma
which, applied repeatedly, enables us to construct discrete sequences
which “intermediate” between uε and ubε and whose difference can be
estimated using an inductive argument. The convergence of a sequence
of approximate solutions corresponding to a null sequence of parameters
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is then established using estimations which are derived via a well-known
comparison principle for solutions of initial value problems associated to
ordinary differential equations. The limit function is then shown to be
a (local) mild solution of our semilinear problem, and the existence in
the large follows from a “Lipschitz-like” estimation deduced using our
semilinear stability condition (S) together with a result due to Iwamiya.

Previous related results were obtained by Iwamiya, Oharu and Taka-
hashi in [4] for the autonomous case (that is, B (t, x) ≡ B (x) and
w (t, x) ≡ wx), by Georgescu and Oharu in [1] for B (t, x) ≡ B (x) and
w (t, x) ≡ wx, the continuity of the operator B being localized by means
of a lower semicontinuous functional ϕ, by Georgescu and Shioji in [2]
for B (t, x) ≡ B (x) and w (t, x) ≡ w (x), w being an increasing unique-
ness function, by Pavel in [7] for B (t, ·) g (t)-dissipative, g : [0, T ) → R
being a nondecreasing function and by Iwamiya in [3] for B satisfying
[B (t, x)−B (t, y) , x− y]− ≤ w (t, |x− y|) for all (t, x) , (t, y) ∈ D. The
present paper is strongly connected to these works.

2. Comparison theorems

For convenience of future reference in the rest of the paper, we state
some comparison results for solutions of initial value problems for ordi-
nary differential equations.

Let w : [0, T ) × R → R be a continuous function. Given (s, x) ∈
[0, T ) × X, we shall denote by mδ (t; s, x) the maximal solution of the
initial value problem{

r′(t) = w(t, r(t)) + δ, s < t < T ;

r(s) = x

and by [s, τδ (s, x)) its largest interval of existence. When δ = 0, we shall
sometimes omit the subscript δ, since there is no danger of confusion.

The following basic comparison result ([6, Theorem 1.6.1]) holds.

Lemma 2.1. Suppose that Ω ⊂ R2 is open and g ∈ C (Ω). Let (t0, u0) ∈
Ω and let [t0, τ (t0, u0)) be the largest interval of existence on which the
maximal solution m (t; t0, u0) of the initial value problem{

u′(t) = g (t, u(t)) , t > t0;

u(t0) = u0
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exists. Let x ∈ C ([t0, τ (t0, u0))) be such that (t, x (t)) ∈ Ω for t ∈
[t0, τ (t0, u0)), x (t0) ≤ u0 and Dx (t) ≤ g (t, x (t)) for some fixed Dini
derivative D and for t ∈ [t0, τ (t0, u0)) \N , N being an at most countable
set. Then x (t) ≤ m (t; t0, u0) for t ∈ [t0, τ (t0, u0)) .

As a consequence, the following fundamental properties of the nonex-
tendable maximal solution mδ (t; s, x) may be obtained using an argu-
ment which is similar to the one employed in [5, Lemma 5.1].

Lemma 2.2. Let δ0, α0 ≥ 0 and let 0 ≤ t0 < T . Then the following
properties (i) through (iii) hold:

(i) If α ≥ α0 and δ ≥ δ0, then τδ (t0, α) ≤ τδ0 (t0, α0) and mδ (t; t0, α) ≥
mδ0 (t; t0, α0) for t ∈ [t0, τδ (t0, α)).

(ii) If α ↓ α0 and δ ↓ δ0, then τδ (t0, α) ↑ τδ0 (t0, α0) and mδ (t; t0, α) ↓
mδ0 (t; t0, α0) uniformly on every compact subinterval of [0, τδ (t0, α)) .

(iii) If 0 ≤ s < τδ0 (t0, α0), then τδ0 (t0, α0) ≤ τδ0 (s, mδ0 (s; s0, α0)) and

mδ0 (t; s, mδ0 (s; α0)) = mδ0 (t; s0, α0) for t ∈ [s, τδ0 (t0, α0)) .

Remark 2.1. The function g in Lemma 2.1 (and consequently the func-
tion w in Lemma 2.2) needs not be neither a uniqueness function nor
separately nondecreasing; it suffices to be continuous. However, if w is a
continuous uniqueness function, then m (t; t0, 0) is defined on [t0, T ) and
m (t; t0, 0) ≡ 0.

Let us now particularize w to be an uniqueness function, not necessarily
increasing. Given K > 0, we define

wK (t, x) =

{
w(t, x) if t ∈ [0, τ) and x ∈ [0, K];

w(t,K) if t ∈ [0, τ) and x > K.

We shall also denote by mK
δ (t; t0, α) the maximal solution of the initial

value problem {
r′(t) = wK(t, r(t)) + δ, t > t0;

r(t0) = α.

We note that, since wK (·, ·) is bounded on [0, c]× R for any 0 < c < T ,
τK
δ (t0, α) = T for any δ, α ∈ R+. It is then seen that the following

property, which is similar to [5, Lemma 3.5] holds.

Lemma 2.3. Suppose that w is an uniqueness function and let K > 0.
The following properties (i) and (ii) hold.
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(i) If 0 ≤ t0 < T , α ↓ α0 and δ ↓ δ0, then mK
δ (t; t0, α) ↓ mK

δ0
(t; t0, α0)

uniformly on any compact subinterval of [0, T ).

(ii) mK
0 (t; t0, 0) = 0 for t0 ∈ [0, T ) and t0 ≤ t < T .

Now, suppose that w is a continuous function which is separately non-
decreasing. One may see that the following result holds.

Lemma 2.4. Let w : [0, T ) × R → R be a continuous function which is
separately nondecreasing. Then m(t; t0, u0) + α ≤ m(t; t0, u0 + α) for all
t0 ∈ [t0, T ), u0, α ∈ R+ and t ∈ [t0, τ(t0, u0)).

Proof. Let us denote u1 (t) = m(t; t0, u0)+α and u2 (t) = m(t; t0, u0 +α).
One then has

u′1 (t) = m′(t; t0, u0) = w (t,m(t; t0, u0)) ≤ w (t, u1 (t)) ;

u′2 (t) = m′(t; t0, u0 + α) = w (t,m(t; t0, u0 + α)) = w (t, u2 (t)) .

Since u1 (0) = u2 (0) = u0 + α, one deduces the conclusion from Lemma
2.1. �

3. The construction of the approximate solutions

A first step towards the proof of our global existence result is to es-
tablish that the subtangential condition (ST) holds uniformly in a local
sense.

Theorem 3.1. Let (t, x) ∈ D, ε ∈ (0, 1) and let r = r (t, x, ε) be chosen
such that |B (s, y)− B (t, x) | ≤ ε/4, supσ∈[0,r]|T (σ)B (t, x)− B (t, x) | ≤
ε/4 and |B (s, y) | ≤ M for any (s, y) ∈ D∩Sr(t, x) and some M > 0. De-
fine h (t, x, ε) = sup

{
h ∈ (0, T − t); h (M + 1) + supσ∈[0,h] |T (σ) x− x| ≤

r
}

and let h ∈ [0, h (t, x, ε)), y ∈ D (t + h) satisfying |y − T (h) x| ≤
M +1. Then for each η > 0 with h+ η ≤ h (t, x, ε) there is z ∈ D (t + η)
such that (t + η, z) ∈ D ∩ Sr (t, x) and |z − T (η) y − ηB (t, y)| ≤ ηε.

Proof. See [3, Proposition 5.1]. Note that Iwamiya’s extra assumption
on the operator B is not used in the proof of this result. �

Remark 3.1. We note that the existence of y in the above theorem is
insured by condition (S). Also, if we let h = 0 and y = x in the above
theorem, it is seen that for every 0 < η ≤ h (t, x, ε) there is z ∈ D (t + η)
such that (t + η, z) ∈ D ∩ Sr (t, x) and |z − T (η) x− ηB (t, x)| ≤ ηε.
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This implies that our subtangential condition (ST) is actually equivalent
to its apparently stronger form

lim sup
h↓0

(1/h)d (T (h) x + hB (t, x) , D (t + h)) = 0 for all (t, x) ∈ D.

We now state two auxiliary results ([3, Lemma 5.1] and [3, Lemma
5.2]), which will be used to establish various convergence results through-
out this paper.

Lemma 3.1. Let (sn, yn)n≥0 be a sequence in D such that sn ≤ sn+1.
The following identity holds:

yn = T (sn − s0) y0 +
n−1∑
k=0

(sk+1 − sk) T (sn − sk+1) B(sk, yk)

+
n−1∑
k=0

T (sn − sk+1) [yk+1 − T (sk+1 − sk) yk − (sk+1 − sk) B(sk, yk)] .

Lemma 3.2. Let ε > 0 and M > 0. Let (sn, yn)n≥0 be a sequence in D
such that sn ≤ sn+1, |B(sn, yn)| ≤ M and

|yn+1 − T (sn+1 − sn) yn − (sn+1 − sn) B(sn, yn)| ≤ (sn+1 − sn) ε

for n ≥ 0. If sn ↑ s as n → ∞, then the sequence (yn)n≥0 is a Cauchy
sequence in X and limn→∞(sn, yn) = (s, y) ∈ D.

We now turn our attention to the construction of the approximate so-
lution for (SP;s, x). First, for a given small parameter ε we construct
time-discretizing sequences, respectively solution-discretizing sequences,
(ti)0≤i≤N and (xi)0≤i≤N enjoying a number of fundamental properties
which will be used to establish our convergence estimations. Our ap-
proximate solutions will then be defined as piecewise continuous func-
tions whose expressions involve the sequences (ti)0≤i≤N and (xi)0≤i≤N .

Theorem 3.2. Suppose that the subtangential condition (ST) is satisfied.
Let (t, x) ∈ D and assume that R > 0 and M > 0 are such that t+R < T
and |B (s, y)| ≤ M for (s, y) ∈ D ∩ SR (t, x). Let τ > 0 small enough to
satisfy τ (M + 1) + supσ∈[0,τ ] |T (σ) x− x| ≤ R.

Then for each ε ∈ (0, 1) there exist sequences (ti)0≤i≤N and (xi)0≤i≤N

such that

(i) t0 = t, x0 = x, tN = t + τ ;
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(ii) 0 < ti+1 − ti ≤ ε for 0 ≤ i ≤ N − 1 ;

(iii) (ti, xi) ∈ D ∩ SR (t, x) for 0 ≤ i ≤ N ;

(iv) |xi+1 − T (ti+1 − ti) xi − (ti+1 − ti) B (ti, xi)| ≤ (ti+1 − ti) ε

for 0 ≤ i ≤ N − 1 ;

(v) |xi − T (ti) x| ≤ ti (M + 1) for 0 ≤ i ≤ N ;

(vi) For 0 ≤ i ≤ N − 1 there is ri ∈ (0, ε] such that

|B (s, y)−B (ti, xi)| ≤ ε/4 for (s, y) ∈ Sri
(ti, xi) ∩D,

supσ∈[0,ri]
|T (σ) B (ti, xi)−B (ti, xi)| ≤ ε/4 and

(ti+1 − ti) (M + 1) + supσ∈[0,ti+1−ti]
|T (σ) xi − xi| ≤ ri.

Proof. Set t0 = t and x0 = x. Suppose that (ti)0≤i≤n and (xi)0≤i≤n

have been constructed in such a way that conditions (i) through (vi) are
fulfilled. We then define

rn = sup

{
r ∈ (0, ε] ; |B (s, y)−B (tn, xn)| ≤ ε/4 for y ∈ D∩Sr (tn, xn)

and sup
σ∈[0,r]

|T (σ) B (tn, xn)−B (tn, xn)| ≤ ε/4

}
. (3.1)

and

ηn = sup

{
t > 0; t (M + 1) + sup

σ∈[0,t]

|T (σ) xn − xn| ≤ rn

}
. (3.2)

We define hn = min (t + τ − tn, ηn) and tn+1 = tn + hn. Applying Theo-
rem 3.1 with h = 0, η = hn, y = x = xn and r = rn, one finds xn+1 such
that (tn+1, xn+1) ∈ D ∩ Srn (tn, xn) and

|xn+1 − T (hn) xn − hnB (tn, xn)| ≤ εhn .

By our induction hypotheses, it is seen that

|xn+1 − T (tn+1) x| ≤ |xn+1 − T (hn) xn − hnB (tn, xn)|
+ |T (hn) (T (tn) xn − xn)|+ hn |B (tn, xn)|

≤ εhn + tn (M + 1) + hn (M + 1)

< tn+1 (M + 1) ,

which implies

|xn+1 − x| ≤ tn+1 (M + 1) + |T (tn+1) x− x|
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≤ τ(M + 1) + sup
s∈[0,τ ]

|T (s) x− x| ≤ R,

and hence the sequences (ti)0≤i≤n+1 and (xi)0≤i≤n+1satisfy (ii) through
(vi) and the first part of (i). It now remains to show that t + τ can be
attained in a finite number of steps.

We argue by contradiction and suppose that ti < t + τ for all i ≥ 0
(which implies that hi = ηi for all i ≥ 0). Then (ti)i≥0 is convergent to
some t′ ≤ t+τ , and hence (xi)i≥0 is convergent to some x′, by Lemma 3.2.
Since B is continuous, it is seen that B (ti, xi) → B (t′, x′) as i → +∞.
Interpreting the definition of ri and using the continuity of B, one obtains
that there is c > 0 such that ηi > c for all i ≥ 0 and hence (ti)i≥0 diverges,
which is a contradiction. We therefore obtain that there is N ≥ 1 such
that tN = t + τ , which finishes the proof. �

Remark 3.2. Let us denote by
(
tj

)
0≤j≤N

an arbitrary partition of the

interval [t, t + τ ]. By defining hn = min
(
t + τ − tn, ηn, tj+1

)
, if tn ∈[

tj, tj+1

)
, putting at each step tn+1 = tn + hn instead of tn+1 = tn + hn

and noting that if ti < t + τ for all i ≥ 0, then hi = ηi for i greater
than some N0 since (ti)i≥N0

will remain in some interval [tj0 , tj0+1), one
obtains using the same argument by contradiction that (ti)0≤i≤N may be

constructed in such a way that
{
tj; 0 ≤ j ≤ N

}
⊂ {ti; 0 ≤ i ≤ N}.

For a given small parameter ε, using the previously constructed fi-
nite sequences (ti)0≤i≤N and (xi)0≤i≤N , we may define an approximate
solution uε : [t, t + τ ] → X by

uε(ξ) =


T (ξ − ti)xi + (ξ − ti)B(ti, xi) for ξ ∈ [ti, ti+1) ,

0 ≤ i ≤ N − 1

T (t + τ − tN−1)xN−1

+(t + τ − tN−1)B(tN−1, xN−1) for ξ = t + τ.

(3.3)

Using (3.3) and property (vi) in the previous lemma, one may show that
|xi − uε(ξ)| ≤ ε for any ξ ∈ [ti, ti+1), 0 ≤ i ≤ N−1 and |xN − uε(t + τ)| ≤
ε.

4. A convergence estimate

Given a null sequence of parameters (εn)n≥1, we now show that the
corresponding sequence of approximate solutions (uεn)n≥1 is uniformly
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convergent to a continuous function u, which will in turn be a mild so-
lution of (SP;t, x). Since it is difficult to estimate directly the difference
between two approximate solutions corresponding to different small pa-
rameters ε and ε̂, we provide the following lemma which, used repeatedly,
will allow us to construct two sequences of “intermediate” elements by
means of which |uε − uε̂| can be estimated using an inductive argument.

Lemma 4.1. Suppose that conditions (S) and (ST) are satisfied and
that w is a separately nondecreasing continuous function. Let (t, x) ∈ D
and ε ∈ (0, 1/3). Assume that r = r(t, x, ε) is a real number such that
0 < r ≤ ε,

|B (s, y)−B (t, x) | ≤ ε/4, |B (s, y) | ≤ M (t, x, ε) for any (s, y) ∈
D ∩ Sr(t, x) (4.1)

and
sup

σ∈[0,r]

|T (σ)B (t, x)−B (t, x) | ≤ ε/4, (4.2)

where M (t, x, ε) is a real number.
Denote

h (t, x, ε) = sup
{
h ∈ (0, T − t); h (M + 1) + supσ∈[0,h] |T (σ) x− x| ≤ r

}
.

Let h ∈ [0, h (t, x, ε)) and let y ∈ D (t + h) such that |y − T (h) x| ≤
M +1. Let x̂ ∈ D (t + h) and ε̂ ∈ (0, 1/3). Assume that r̂ = r̂(t+h, x̂, ε̂)
is a real number such that 0 < r̂ ≤ ε̂,

|B (s, y)−B (t + h, x̂) | ≤ ε̂/4, |B (s, y) | ≤ M̂ (t + h, x̂, ε̂) for any

(s, y) ∈ D ∩ Sbr(t + h, x̂) (4.3)

and
sup

σ∈[0,br]|T (σ)B (t + h, x̂)−B (t + h, x̂) | ≤ ε̂/4, (4.4)

where M̂ (t + h, x̂, ε̂) is a real number. Denote ĥ (t + h, x̂, ε̂) = sup
{
h ∈

(0, T − t − h); h (M + 1) + supσ∈[0,h] |T (σ) x− x| ≤ r̂
}
. Then for each

δ > 0 and η > 0 such that h + η ≤ h (t, x, ε) and η ≤ ĥ (t + h, x̂, ε̂)
there exist z, ẑ ∈ D (t + h + η) such that (t + h + η, z) ∈ D ∩ Sr (t, x),
(t + h + η, ẑ) ∈ D ∩ Sbr (t + h, x̂) and

|z − T (η) y − ηB (t + h, y)| ≤ 2ηε, (4.5)

|ẑ − T (η) x̂− ηB (t + h, x̂)| ≤ 2ηε̂, (4.6)

|z − ẑ| ≤ m
|x−bx|+ε+bε
δ+ε+bε (t + h + η; t + h, |y − x̂|) . (4.7)
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Proof. First, we see that (t + h, y) ∈ D ∩ Sr (t, x), since

|y − x| ≤ |y − T (h)x|+ |T (h)x− x| ≤ h(M + 1) + |T (h)x− x| ≤ r

and h ≤ r. We now construct sequences (sn)n≥0, (xn)n≥0 and (x̂n)n≥0

satisfying

(i) s0 = 0, x0 = y, x̂0 = x̂;

(ii) 0 < sn < sn+1, (t + h + sn, xn) , (t + h + sn, x̂n) ∈ D and

lim
n→∞

sn = η;

(iii) |xn − T (sn − sn−1) xn−1 − (sn − sn−1) B (t + h + sn−1, xn−1)|
≤ (sn − sn−1) ε;

(iv) |x̂n − T (sn − sn−1) x̂n−1 − (sn − sn−1) B (t + h + sn−1, x̂n−1)|
≤ (sn − sn−1) ε̂;

(v) |T (sn − sn−1) (xn−1 − x̂n−1) + (sn − sn−1) [B (t + h + sn−1, xn−1)

−B (t + h + sn−1, x̂n−1)]| ≤ |xn−1 − x̂n−1|+ (sn − sn−1) δ

+ (sn − sn−1) w (t + h + sn−1, |xn−1 − x̂n−1|) ;

(vi) |xn − T (sn) x0| ≤ sn (M + 1) ;

(vii) |x̂n − T (sn) x̂0| ≤ sn (M + 1) ;

(viii) (t + sn + h, xn) ∈ Sr(t + h, x) ∩D;

(ix) (t + sn + h, x̂n) ∈ Sr̂(t + h, x̂) ∩D,

for each n ≥ 0, properties (iii) through (v) being not formulated for
n = 0. We set s0 = 0, x0 = y, x̂0 = x̂, so that the remaining properties
(i) and (vi) through (ix) are satisfied for n = 0. Assume that (sn)0≤n≤N ,
(xn)0≤n≤N and (x̂n)0≤n≤N have been constructed in such a way that (i)
and (iii) through (ix) are satisfied, together with the first half of (ii). We
denote

hN = sup {ξ > 0; sN + ξ ≤ η; |T (ξ) (xN − x̂N)

+ξ (B (t + h + sN , xN)−B (t + h + sN , x̂N))| ≤ |xN − x̂N |
+ξw (t + h + sN , |xN − x̂N |) + ξδ} .

Now, condition (S) implies that hN > 0. We choose hN ∈
(
hN/2, hN

)
and set sN+1 = sN + hN , which insures the validity of (v) for n = N + 1.
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Using Theorem 3.1, one may find xN+1, x̂N+1 ∈ D (t + h + sN+1) such
that

|xN+1 − T (sN+1 − sN) xN − (sN+1 − sN) B (t + h + sN , xN)|
≤ (sN+1 − sN) ε;

|x̂N+1 − T (sN+1 − sN) x̂N − (sN+1 − sN) B (t + h + sN , x̂N)|
≤ (sN+1 − sN) ε̂,

and so (iii) and (iv) are satisfied for n = N + 1.
Also, using (iii) one sees that

|xN+1 − T (sN+1) x0| ≤ (sN+1 − sN) M + |xN − T (sN) x0|
+ (sN+1 − sN) ε

≤ sN+1 (M + 1)

and similarly |x̂N+1 − T (sN+1) x̂0| < sN+1 (M + 1), so that (vi) and (vii)
are also satisfied for n = N + 1. From (vi) it may be obtained that

|xN+1 − T (sN+1 + h) x| ≤ (sN+1 + h) (M + 1) ,

which yields

|xN+1 − x| < (sN+1 + h) (M + 1) + |T (sN+1 + h) x− x| ≤ r (t, x, ε)

and therefore (xN+1, t + sN+1) ∈ Sr (t, x). The validity of (vii) and (ix)
may be proved in a similar manner. Now, (iii) and (iv) together with
Lemma 3.2 imply that (xn)n≥0 and (x̂n)n≥0 are convergent to some z,
respectively ẑ. It remains to show that lim

n→∞
sn = η.

Suppose that lim
n→∞

sn = η < η. From (ST), one may find ξ ∈ (0, η) such

that

|T (ξ) (z − ẑ) + ξ (B (t + η, z)−B (t + η, ẑ))|
≤ |z − ẑ|+ ξw (t + η, |z − ẑ|) + (1/2)ξδ. (4.8)

Since sn → s as n →∞, one may choose N ≥ 1 so that s− sn ≤ ξ/2
for all n ≥ N . Define ξn = s− sn + ξ. Since sn + ξn < η and ξn > hn for
each n ≥ N , one sees that

|T (ξn) (xn − x̂n) + ξn (B (t + h + sn, xn)−B (t + h + sn, x̂n))|
> |xn − x̂n|+ ξnw (t + h + sn, |xn − x̂n|) + ξnδ

for all n ≥ N , and passing to limit as n →∞ we obtain that

|T (ξ) (z − ẑ) + ξ (B (t + η, z)−B (t + η, ẑ))|
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≥ |z − ẑ|+ ξw (t + η, |z − ẑ|) + ξδ,

which contradicts (4.8). Using Lemma 3.1 for yn = xn and sn = t + sn,
together with (iii), one deduces that |xn − T (sn) y − snB (t + h, y)| ≤
7sn/4, which implies that |z − T (η) y − ηB (t + h, y)| ≤ 2ηε. One may
also obtain in a similar manner that |ẑ − T (η) x̂− ηB (t + h, x̂)| ≤ 2ηε̂,
that is, estimations (4.5) and (4.6) are valid.

Also, it is easy to see that

|xn+1 − x̂n+1|
≤ |xn+1 − T (sn+1 − sn) xn − (sn+1 − sn) B (t + h + sn, xn)|

+ |x̂n+1 − T (sn+1 − sn) x̂n − (sn+1 − sn) B (t + h + sn, x̂n)|
+ |T (sn+1 − sn) (xn − x̂n) + (sn+1 − sn) [B (t + h + sn, xn)

−B (t + h + sn, x̂n)]| ,
which implies that

|xn+1 − x̂n+1| ≤ |xn − x̂n|+ (sn+1 − sn) w (t + h + sn, |xn − x̂n|)
+ (sn+1 − sn) (δ + ε + ε̂) .

We also note that, from (viii) and (ix), |xn − x̂n| ≤ |x− x̂| + r + r̂ , so
w (t + h + sn, |xn − x̂n|) = w|x−bx|+r+br (t + h + sn, |xn − x̂n|). We denote

u1 (ξ) = |xn − x̂n|+ (ξ − t− h− sn) w|x−bx|+r+br (t + h + sn, |xn − x̂n|)
+ (ξ − t− h− sn) (δ + ε + ε̂) ;

u2 (ξ) = m
|x−bx|+r+br
δ+ε+bε (ξ; t + h + sn, |xn − x̂n|) , ξ ≥ t + h + sn.

It is seen that

u′1 (ξ) = |xn − x̂n|+ w|x−bx|+r+br (t + h + sn, |xn − x̂n|) + (δ + ε + ε̂)

≤ w|x−bx|+r+br (ξ, u1 (ξ)) + (δ + ε + ε̂) ;

u′2 (ξ) = w|x−bx|+r+br (ξ, u2 (ξ)) + (δ + ε + ε̂) , ξ ≥ t + h + sn.

Since u1 (t + h + sn) = u2 (t + h + sn) = |xn − x̂n|, one obtains that
u1 (ξ) ≤ u2 (ξ) for ξ ≥ t + h + sn, and setting ξ = t + h + sn+1 it is
inferred that

|xn+1 − x̂n+1| ≤ m
|x−bx|+r+br
δ+ε+bε (t + h + sn+1; t + sn, |xn − x̂n|) .

Using Lemma 2.3, we easily deduce that

|xn+1 − x̂n+1| ≤ m
|x−bx|+r+br
δ+ε+bε (t + h + sn+1; t, |y − x̂|) .
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Passing to limit as n →∞ in the above we obtain estimation (4.7). �

5. The local existence of the solution

We now apply the estimations obtained in the previous lemma in order
to obtain the existence of a (unique) local mild solution to (SP;t, x) via
a limiting argument.

Theorem 5.1. Suppose that conditions (ST), (S) and (U) are satis-
fied. Let (t, x) ∈ D and let R > 0, M > 0 and τ > 0 be such that
t + R < T , |B (s, y)| ≤ M for (s, y) ∈ D ∩ SR (t, x) and τ (M + 1) +
supσ∈[0,τ ] |T (σ) x− x| ≤ R. Then there exists a unique mild solution
u (·) to (SP;t, x) on [t, t + τ ] satisfying the initial condition u (t) = x.

Proof. Let ε0 ∈ (0, 1/3) and let (εn)n≥1 be a null sequence in (0, ε0). Our
proof will consist in constructing a corresponding sequence of approxi-
mate solutions (uεn)n≥1 with the help of (3.3) and Theorem 3.2, proving
its uniform convergence as n → ∞ using some estimations provided by
Lemma 4.1 and showing that the uniform limit u is actually a mild so-
lution of (SP;t, x).

Using Theorem 3.2, we construct a sequence of partitions (Pn)n≥1 =(
(tni )0≤i≤Nn

)
n≥1

of [t, t + τ ] and a sequence of solution-discretizing ele-

ments
(
(xn

i )0≤i≤Nn

)
n≥1

in SR (t, x) which enjoy properties (i) through

(vi) mentioned in the statement of Theorem 3.2. As seen in Remark 3.2,
one may actually construct

(
(tni )0≤i≤Nn

)
n≥1

in such a way that Pn+1 =(
tn+1
i

)
0≤i≤Nn+1

refines Pn = (tni )0≤i≤Nn
for all n. We also construct a

sequence of approximate solutions (un)n≥1 on [t, t + τ ] using the formula
indicated in (3.3), that is,

un(ξ) =


T (ξ − tni )xn

i + (ξ − tni )B(tni , x
n
i ) for ξ ∈

[
tni , t

n
i+1

)
,

0 ≤ i ≤ Nn − 1

T (t + τ − tnNn−1)x
n
Nn−1

+(t + τ − tnNn−1)B(tnNn−1, x
n
Nn−1) for ξ = t + τ.

Let 1 ≤ n < m and let s ∈ (t, t + τ) (if s = t + τ , then our desired
convergence estimate can be obtained in essentially the same manner).
Then there are 0 ≤ i ≤ Nn − 1 and 0 ≤ j ≤ Nm − 1 such that
t ∈

[
tni , t

n
i+1

)
∩

[
tmj , tmj+1

)
. We need now to find an uniform estimate

for |un (s)− um (s)|.
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Since Pm is finer than Pn, we first note that each node of the first
partition is also a node for the second partition. Let us define a partition
(sl)

j+1
l=0 of [t, s] by sl = tml for 0 ≤ l ≤ j and sj+1 = s. We plan to estimate

|un (s)− um (s)| by means of Lemma 4.1, using a recurrent argument. To
study the applicability of Lemma 4.1, take an arbitrary l, 0 ≤ l ≤ j.

If sl is a common point for Pm and Pn, that is, sl = tnk for some k,
one sees that Lemma 4.1 is immediately applicable for t = sl, x = xn

k ,
x̂ = xm

l , y = x, h = 0, η = sl+1 − sl, δ = εm and finds zl+1 and ẑl+1

satisfying

|zl+1 − T (sl+1 − sl) xn
k − (sl+1 − sl) B (sl, x

n
k)| < 2 (sl+1 − sl) εn, (5.1)

|ẑl+1 − T (sl+1 − sl) xm
l − (sl+1 − sl) B (sl, x

m
l )| < 2 (sl+1 − sl) εm, (5.2)

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1; sl, |xn
k − xm

l |) . (5.3)

We now study the case in which sl is not a common point for Pm and
Pn. Let sl = tml ∈

(
tnk , t

n
k+1

)
and suppose that sl−1 = tnk , that is, sl is

the first uncommon point in
(
tnk , t

n
k+1

)
. We let t = tnk , x = xn

k , x̂ = xm
l ,

y = zl, h = sl − tnk , η = sl+1 − sl and δ = εm. Since

|zl0+1 − T (sl0+1 − tnk) xn
k − (sl0+1 − tnk) Bxn

k | ≤ 2 (sl0+1 − tnk) εn,

one may infer that

|zl0+1 − T (sl0+1 − tnk) xn
k | ≤ (sl0+1 − tnk) (M + 2εn)

< (sl0+1 − tnk) (M + 1)

and Lemma 4.1 is also applicable in this situation. Suppose now that
sl−p = tnk for some p > 0, that is, sl is the p-th uncommon point in(
tnk , t

n
k+1

)
. If 2 < a ≤ p and the auxiliary elements zl−p+1, . . . , zl−p+a−1

are constructed by means of Lemma 4.1, satisfying the required property
|zl−p+b − T (sl−p+b − tnk) xn

k | ≤ (sl−p+b − tnk) (M + 1) for 1 ≤ b ≤ a − 1,
then

|zl−p+a − T (sl−p+a − tnk) xn
k |

≤ (sl−p+a − sl−p+a−1) (M + 2εn) + |zl−p+a−1 − T (sl−p+a−1 − tnk)|
and therefore

|zl−p+a − T (sl−p+a − tnk) xn
k | < (sl−p+a − tnk) (M + 1) .

Reasoning inductively, one deduces that

|zl − T (sl − tnk) xn
k | < (sl − tnk) (M + 1)

and Lemma 4.1 is again applicable.
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In view of the above, we can again apply Lemma 4.1 in the case in
which sl is not a common point for Pm and Pn and find zl+1 and ẑl+1

satisfying

|zl+1 − T (sl+1 − sl) zl − (sl+1 − sl) B (sl, zl)| < 2 (sl+1 − sl) εn, (5.4)

|ẑl+1 − T (sl+1 − sl) xm
l − (sl+1 − sl) B (sl, x

m
l )| < 2 (sl+1 − sl) εm, (5.5)

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1; sl, |zl − xm
l |) . (5.6)

We now estimate |un (s)− um (s)|. One sees that

|un (s)− um (s)| ≤ |un (s)− zj+1|+ |zj+1 − ẑj+1|
+ |ẑj+1 − um (s)| . (5.7)

Since sj+1 = s and sj = tmj , from (5.2) or (5.5) we obtain that

|ẑj+1 − um (s)| =
∣∣ẑj+1 − T

(
s− tmj

)
xm

j +
(
s− tmj

)
B

(
tmj , xm

j

)∣∣
≤ 2

(
s− tmj

)
εm. (5.8)

To estimate the first term in (5.7), one should consider whether or not
tmj is a common point for partitions Pm and Pn.

If tmj is a common point, it may be obtained that |un (s)− zj+1| ≤
2
(
s− tmj

)
εn reasoning as above. If tmj is not a common point, suppose

that tni = si0 for some i0. Then

|un (s)− zj+1| = |zj+1 − T (sj+1 − tni ) xn
i − (sj+1 − tni ) B (si0 , x

n
i )|

≤
∣∣zi0+1 − T

(
s

i0+1
− si0

)
xn

i −
(
s

i0+1
− si0

)
B (si0 , x

n
i )

∣∣
+

j∑
l=i0+1

|zl+1 − T (sl+1 − sl) zl − (sl+1 − sl) B (sl, zl)|

+

j∑
l=i0

(sl+1 − sl) |B (sl, zl)−B (si0 , x
n
i )|

+

j∑
l=i0

(sl+1 − sl) |T (sj+1 − sl+1) B (si0 , x
n
i )−B (si0 , x

n
i )|

and using (5.1), (5.4) together with (4.1) and (4.2) we can infer that

|un (s)− zj+1| ≤ 3
(
sj+1 − tin

)
εn. (5.9)

Let now
[
tnk , t

n
k+1

]
be a generic interval for Pn. Since Pm is finer than

Pn, there are l0, l1 ∈ N such that
[
tnk , t

n
k+1

]
= [sl0 , sl1 ] . Using the same
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argument displayed for the derivation of (5.9), one obtains that∣∣zl1 − xn
k+1

∣∣ ≤ 4
(
tnk+1 − tnk

)
εn. (5.10)

Let sl2 be a generic point for Pm. From (5.1) and (5.4) and from (iv)
in Theorem 3.2, one finds that∣∣zl2 − xm

l2

∣∣ ≤ 3 (sl2 − sl2−1) εm. (5.11)

We now start estimating |zl+1 − ẑl+1|. Let l ∈ N , 0 ≤ l ≤ j. If sl is
a common point for Pm and Pn, relations (5.3), (5.10) and (5.11) yield
that

|zl+1 − ẑl+1| (5.12)

≤ m2R+1
2εm+εn

(
sl+1; sl, |zl − ẑl|+ 3 (sl − sl−1) εm + 4

(
tnk − tnk−1

)
εn

)
.

If sl is not a common point, relations (5.6) and (5.11) yield that

|zl+1 − ẑl+1| ≤ m2R+1
2εm+εn

(sl+1; sl, |zl − ẑl|+ 3 (sl − sl−1) εm) . (5.13)

We note that

|z1 − ẑ1| ≤ m2R+1
2εm+εn

(s1; 0, 0) (5.14)

and

m2R+1
2εm+εn

(
t; s1, m

2R+1
2εm+εn

(s1; s2, α1) + α2

)
≤ m2R+1

2εm+εn
(t; s2, α1 + α2)

(5.15)
for any t, s1, s2 and α1, α2 ≥ 0.

From (5.12), (5.13), (5.14) and (5.15) we obtain using a recurrent ar-
gument that

|zj+1 − ẑj+1| ≤ m2R+1
2εm+εn

(
sj+1; 0, 4εnt

n
i+1 + 3εmtmj+1

)
. (5.16)

Using (5.7), (5.8), (5.9) and (5.16), it is then deduced that

|un (s)− um (s)| ≤ m2R+1
2εm+εn

(
sj+1; 0, 4εnt

n
i+1 + 3εmtmj+1

)
+ 2

(
s− tmj

)
εm + 3

(
tmj+1 − tin

)
εn.

Now, our convergence result, Lemma 2.3, implies that (um)m≥1 is uni-
formly convergent on [t, t + τ ] to a function satisying u (t) = x.

Let σ ∈ [t, t + τ). Then for each n ≥ 1 there is in such that σ ∈[
tnin , tnin+1

)
. Since

∣∣xn
in − un (σ)

∣∣ ≤ εn, it is seen that xn
in → u (σ) as

n → ∞ and since tnin ↑ t, one obtains from (D) that (t, u (t)) ∈ D. The
case σ = τ may be treated in the same manner.
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Let us define γn : [t, t + τ ] → [t, t + τ ] by

γn (ξ) =

{
tni for ξ ∈

[
tni , t

n
i+1

)
, 0 ≤ i ≤ Nn − 1

tnNn−1 for ξ = t + τ
, (5.17)

and vn : [t, t + τ ] → X by

vn (ξ) = T (ξ − t) x +

∫ ξ

t

T (ξ − σ) B(σ, un (γn (σ)))dσ for ξ ∈ [t, t + τ ] .

(5.18)
One may see that

|un (t)− vn (t)| < 5/4 (ξ − t) εn for ξ ∈ [t, t + τ ] ,

and

|un (γn (ξ))− un (ξ)| ≤ εn, |γn (ξ)− ξ| ≤ εn

(see [1, pag. 163] for a related argument). Passing to limit as n → ∞
in (5.18) and noting that B is continuous, one obtains that u is a mild
solution for (SP;t, x). The uniqueness of the mild solution will follow
from the next lemma. �

6. The global existence of the solution and its uniqueness

Let us now study the global existence of the mild solution and its
uniqueness. We first indicate a lemma which insures a local “Lipschitz-
like” dependence of the solution with respect to the initial data.

Lemma 6.1. Let u, v be mild solutions of (SP;t, x) and (SP;t, y) defined
on a common interval of existence [t, t + τ ]. Then

|u(ξ)− v(ξ)| ≤ |x− y|+
∫ ξ

t

w(ξ, |u(ξ)− v(ξ)|)dξ for ξ ∈ [t, t + τ ] .

(6.1)
Also,

|u(ξ)− v(ξ)| ≤ m(ξ; t, |x− y|) for ξ ∈ [t, t + τ ] (6.2)

and if x ≡ y then u ≡ v.

Proof. Let s ∈ [t, t + τ) and h > 0 such that s + h ≤ t + τ . One has

(1/h) (|u (s + h)− v (s + h)| − |u (s)− v (s)|)
≤ (1/h) (|T (h) (u (s)− v (s)) + h (B (s, u (s))−B (s, v (s)))|

− |u (s)− v (s)|)
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+ (1/h)

∫ s+h

s

|T (s + h− ξ) B (ξ, u (ξ))−B (s, u (s))| ds

+ (1/h)

∫ s+h

s

|T (s + h− ξ) B (ξ, v (ξ))−B (s, v (s))| ds. (6.3)

Passing to inferior limit as h ↓ 0+, we obtain that D+(|u(s)− v(s)|) ≤
w(s; |u(s)− v(s)|) and then (6.2) follows from Lemma 2.1. Also, (6.2)
immediately implies the uniqueness of the mild solution for given initial
data.

Define ϕ : [t, t + τ ] → R by

ϕ(ξ) = |u(ξ)− v(ξ)| −
∫ ξ

t

w(ξ, |u(s)− v(s)|)dξ.

It is easy to see that ϕ ∈ C([t, t + τ ]) and

(D+ϕ)(ξ) = D+(|u(ξ)− v(ξ)|)−w(ξ; |u(ξ)− v(ξ)|) ≤ 0 for ξ ∈ [t, t + τ).

Hence ϕ is decreasing on [t, t + τ ], which implies (6.1). �

Our main result may now be stated as follows.

Theorem 6.1. Suppose that conditions (A), (B), (D) are satisfied, to-
gether with the subtangential condition (ST) and the semilinear stability
condition (S), and that w is a continuous, separately nondecreasing func-
tion which satisfies (U). Then for each (s, u0) ∈ D the semilinear problem
(SP;s, u0) has a unique mild solution u (·; s, u0) on [s, T ). Moreover, for
any (s, u0) and (s, u0) ∈ D and ξ ∈ [s, T ), one has

|u (ξ; s, u0)− u (ξ; s, u0)| ≤ m (ξ; s, |u0 − u0|) . (6.4)

Proof. The local existence of u(·; s, u0) was proved in Theorem 5.1. Its
global existence follows as in [3, Proposition 8.1], noting that our local
existence result, Theorem 5.1, together with Lemma 6.1 may replace
Iwamiya’s Theorem 7.1 and Proposition 4.1, which are used in the proof
of [3, Proposition 8.1], and that the rest of his proof does not require any
dissipativity assumption on the operator B. Finally, (6.4) results from
Lemma 6.1. �
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