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a b s t r a c t

We consider the dynamics of a general stage-structured predator–prey model which
generalizes several known predator–prey, SEIR, and virus dynamics models, assuming that
the intrinsic growth rate of the prey, the predation rate, and the removal functions are given
in an unspecified form. Using the Lyapunov method, we derive sufficient conditions for
the local stability of the equilibria together with estimations of their respective domains
of attraction, while observing that in several particular but important situations these
conditions yield global stability results. The biological significance of these conditions is
discussed and the existence of the positive steady state is also investigated.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the complexity of real-life biological phenomena, it is sometimes the case that certain key parameters
characterizing the underlying interactions are difficult to estimate, and their nature and dependences are not well
understood. One example is the length of delay between the infectionwithHIV and the onset of AIDS,mainly due to difficulty
in pinpointing the precise timewhen the infection occurs.Moreover, the choice or identification of a particular type ofmodel
or function to fit the gathered experimental data may not always be apparent, some examples being the precise choice of
the functional response which describes a predator–prey interaction or the choice of the removal rate of the virus for a virus
transmission model. Hence it is desirable to concentrate as much as possible on establishing the qualitative properties of
the mathematical model based on a set of general and biologically motivated hypotheses which captures the distinctive
features of the biological interactions under consideration.
The Lyapunov method is a robust approach towards proving the local or global stability of a sufficiently large class of

mathematical models which may involve, among others, predator–prey interactions and disease transmission, without
the need of knowing the exact form of the functional coefficients involved. A Lyapunov functional of type V (x, y) =
dx
(
x− x∗ − ln x

x∗
)
+ dy

(
y− y∗ − ln y

y∗

)
has been used by Volterra in [1] in order to establish the stability of a system

modeling the interaction between sharks and predated fish in the Mediterranean Sea. See also [2], where authors used
a related functional, consisting also in a weighted sum of Lyapunov functionals for each member species, to study the
stability of a n-dimensional Lotka–Volterramodel. In [3], Harrison constructed a Lyapunov functional for a two-dimensional
predator–prey model written in an abstract form which vastly generalizes the Lotka–Volterra model and also encompasses
the Leslie–Gower model, allowing for very general functional and numerical responses of the predator. Stability results for
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generalized Gause andHolling–Tannermodels have been obtained by Ardito and Ricciardi [4] and also byHsu andHuang [5],
respectively, by means of employing suitable Lyapunov functionals, with those used in [4] being constructed in a somewhat
different fashion. An extension of a Lyapunov functional proposed by Ardito and Ricciardi [4] was then used by Lindström
in [6] to study the dynamics of a system with one prey and two competing predators. See also [7] for a survey on using the
Lyapunov method to establish the stability of mathematical models in population biology.
A systematic study on the applicability of the Lyapunovmethod to various disease propagationmodels andpredator–prey

interactions has been made by Korobeinikov and his co-workers. In this regard, see [8] for global stability results
for a Leslie–Gower predator–prey model, results which are then extended in [9] to cover a general two-dimensional
predator–prey model with abstract predation rate. See also [10] for local stability results for SIR and SEIRS models featuring
a very general incidence rate of type f (S, I,N), [11] for global stability results for SIR and SIRS models, and [12] for global
stability results for SEIR and SEIS models. The global dynamics of a SEIV model with nonlinear incidence of infection
and removal has been studied by Georgescu and Hsieh in [13] by using the same approach, under certain monotonicity
assumptions upon the functional quotient between the nonlinear force of infection and the removal rate of the virus, while
the stability of a stage-structured predator–prey model with prey-dependent predation has been analyzed in [14]. Some
recent developments in this area include the use of the Lyapunov method to establish the stability of certain classes of
multigroup models (see [15,16]).
Further related advances include the use of Gaines and Mawhin’s coincidence degree theory to discuss the existence

and stability of positive periodic solutions for impulsively perturbed ratio-dependent and prey-dependent predator–prey
models (see [17–19]) or for models of plankton allelopathy (see [20]). Permanence and global attractivity results for stage-
structured predator–prey models which are subject to harvesting and stocking have been obtained by Jiao, Chen, Nieto
and Torres in [21] by using Floquet theory together with comparison estimates. The asymptotic properties of competitive
Lotka–Volterra models in random environments have been discussed by Zhu and Yin in [22], a stochastic principle of
competitive exclusion being derived therein.
These remarks led us to consider the following general stage-structured model:

x′ = n(x)− ω(x, y2);

y′1 = kω(x, y2)− c1m(y1);

y′2 = c2m(y1)− d(y2).

(1)

This model assumes the existence of two species, namely the prey, whose density at time t is denoted by x(t), and the
predator, whose life cycle consists in two stages, immature and mature, with the density of the immature and mature
predator population at time t being denoted by y1(t) and y2(t), respectively. The growth of the prey population in the
absence of predation is given by the intrinsic growth rate n(x), while the interaction between the prey and mature predator
population is described by the predation rate ω(x, y2) which characterizes the feeding behavior of the mature predators
at different prey densities. It is also assumed that the reproductive rate of the mature predators is proportional to their
predation rate, with proportionality constant (consumption efficiency) k, as an increased food intake means that more
energy is available for reproduction. The immature predators are not assumed to hunt for prey or reproduce while being
raised by their mature parents. Themovement of the immature predators outside the immature class due to removal or due
to their maturation is given by c1m(y1), while the influx of new mature predators coming from the immature class is given
by c2m(y1). The intrinsic decrease rate of the predator population in the absence of prey is given by d(y2). Throughout the
rest of our paper, we allow n, ω,m, d to be abstract, unspecified functions of their respective variable(s), which permits us
to generalize several known models indicated below. Our paper is especially motivated by Korobeinikov [9] and Georgescu
and Hsieh [14,13].

Example 1: Stage-structured predator–prey model

If we assume that

n(x) = x(r − ax), ω(x, y2) =
bx

1+mx
y2, c1m(y1) = (D+ d1)y1,

c2m(y1) = Dy1, d(y2) = d2y2,
then (1) reduces to a stage-structured model with stage structure for the predator which has been studied in [23,24,14,25],
in the form

x′ = x(r − ax)−
bx

1+mx
y2,

y′1 = k
bx

1+mx
y2 − (D+ d1)y1,

y′2 = Dy1 − d2y2.

(2)

In this model, the intrinsic growth rate of the prey population is given by the logistic function n(x) = x(r − ax), with per
capita birth rate in the absence of intraspecies competition r and carrying capacity ra . The term f (x) =

bx
1+mx represents the

Holling type II functional (behavioral) response of the mature predator, b being the search rate andm being the search rate
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multiplied by the handling time. The constants d1 and d2 represent the death rates of the immature and mature predators,
respectively, and D denotes the rate at which immature predators become mature predators.
Let us define the basic reproduction number of the predator

R0 = k
br

a+mr
1
d2

D
D+ d1

= kf
( r
a

) 1
d2

D
D+ d1

as being the average number of offsprings produced by a mature predator in its lifetime when introduced in a prey-only
environment with prey at carrying capacity. It has been proved in [14,25] that if R0 > 1 and the prey is abundant enough in
the long term, that is, lim inft→∞ x(t) > r

2a , then the unique positive steady state of the system is globally asymptotically
stable on (0,∞)3. This result may again be interpreted in terms of monotonicity properties, namely that if the dynamics of
the system is a-priori restricted to the monotonicity domain of n, then the stability of the positive equilibrium is assured by
condition R0 > 1.
Consequently, a feature of this model is that if predators are sufficiently aggressive, then the availability of prey in

large quantities precludes all oscillatory behavior. Otherwise, if R0 ≤ 1 then the prey-only equilibrium
( r
a , 0, 0

)
is globally

asymptotically stable. Moreover, if R0 > 1 but condition lim inft→∞ x(t) > r
2a does not necessarily hold, then the prey-only

equilibrium
( r
a , 0, 0

)
is unstable, there exists a unique positive equilibrium, and the system becomes uniformly persistent.

That is, the predators are able to escape extinction.

Example 2: Virus propagation model

If we assume that
n(x) = λ− dx, ω(x, y2) = βxy2, k = 1, c1m(y1) = ay1,
c2m(y1) = k1y1, d(y2) = −µy2,

the system reduces to a virus propagation model studied in [26,27], in the form:

x′ = λ− dx− βxy2,

y′1 = βxy2 − ay1,

y′2 = k1y1 − µy2.

(3)

Thismodel has three variables: uninfected cells x, infected cells y1 and free virus particles y2. The constants 1d ,
1
a ,
1
µ
represent

the average lifetime of uninfected cells, infected cells and free virus, respectively. Uninfected cells are produced at a constant
rate λ and die at rate dx. Free virus particles are assumed to infect uninfected cells at rate βxy2, the average number of virus
particles produced in the lifetime of a single infected cell (the burst size) being given by k1a . It has been observed (see [28]
or [29]) that the virus propagation model (3) is equivalent to an SEIR model with a constant population size assumption,
namely, if the equation for the recovered population R is omitted due to the constant population size assumption, then x
corresponds to the susceptible class S, y1 corresponds to the exposed (infected but not infectious) class E and y2 corresponds
to the infective population I .
Let us define the basic reproduction number of the virus R0 = β λd

1
µ

k1
d as being the average number of newly infected

cells that arise from a single infected virus particle introduced in a totally susceptible environment. It has also been shown
in [29] that if R0 > 1 then there is a unique endemic equilibrium which is globally asymptotically stable, while if R0 ≤ 1
then there is no endemic equilibrium and the infection-free equilibrium is globally asymptotically stable.

Example 3: SEI model with media impact

If we assume that

n(x) = rx
(
1−

x
K

)
, ω(x, y2) = µe−my2xy2, k = 1, c1m(y1) = (c + d)y1,

c2m(y1) = cy1, d(y2) = γ y2,
then (1) reduces to a disease propagation model with media impact studied in [30], in the form:

x′ = rx
(
1−

x
K

)
− µe−my2xy2,

y′1 = µe
−my2xy2 − (c + d1)y1,

y′2 = cy1 − γ y2.

(4)

In this model, x represents the class of susceptible individuals, y1 represents the class of exposed individuals and y2
represents the class of infective individuals. Here, r represents the per capita birth rate of the human population at small
population densities and K represents the carrying capacity for the human population of a given area. The term β(y2) =
µe−my2y2 represents the contact and transmission term, which measures the spread of the infection. Here the parameter
m > 0 measures the impact of media coverage to reduce the contact and transmission, assuming that m increases as the
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public becomes more alert and aware of the virus. Note that Hsu and Hsieh [31,32] also used a first-order approximation of
the term e−my2 in the form of 1

1+my2
tomodel public response to reduce contact and aviod infection during disease outbreaks.

The constant c represents the rate per unit time at which the exposed become infective, d is the natural death rate of
the susceptible population and γ is the removal rate from the infective compartment, which includes the recovery rate
of hospitalized individuals and natural death.
It is shown in [30] that if R0 < 1 (here R0 is again the basic reproduction number, given by R0 = µK c

c+d1
), then the

disease-free equilibrium is globally asymptotically stable, while if R0 > 1, then the number of positive equilibria depends
on the parameter m0 =

8µ
rR0
, in the sense that if the media coverage is small (0 < m < m0), then the model has a unique

endemic equilibrium and if the media coverage is larger (m > m0) then the model has three endemic equilibria. Further,
if R0 > 1 and is close enough to 1 and m is also small, then the endemic equilibrium is locally asymptotically stable and if
m = 0 then the endemic equilibrium is also locally asymptotically stable if R0 > 1 and is small enough.
A few remarks,motivated by the above examples, are now in order. First of all, the basic reproduction number can be used

to successfully predict the survival or extinction of the predator population (or of the viral cells), in the sense that if R0 < 1,
it is expected that the predators (or viral cells) will become extinct, while R0 > 1 is a necessary condition for predator
persistence and for the existence of the positive equilibria. That is, R0 is understood to be a threshold parameter which gives
information about the existence and stability of both the predator-free (virus-free) equilibrium and of the positive equilibria.
The number of positive equilibria and their stability or lack thereof is, in our opinion, tied to the monotonicity of the

intrinsic growth rate n and of the predation rate ω(x, y2). The existence of multiple positive equilibria in Example 3 can be
attributed to the lack of quasi-monotonicity of the predation rate, or to the lack of monotonicity of the functional quotient
between the predation rate and of the death rate as a function of the x-variable. In Example 1, where the predation rate
ω is monotonic in each variable but the intrinsic growth rate n is non-monotonic, there is a single positive equilibrium
whose global stability is assured if the size of the prey class ultimately reaches a monotonicity interval for n, namely, the
interval

( r
2a ,∞

)
. Finally, in Example 2 both n andω aremonotonic, hence the uniqueness and global stability of the positive

equilibrium being assured.

2. The well-posedness of the model

In this section, we shall discuss the global existence of solutions of (1) and their positivity properties, showing that (1)
is well-posed in a biological sense. To this purpose, we assume that n, ω,m, d are continuously differentiable and that the
following hypotheses hold:

(H1) ω(x, y2) ≥ 0 for x, y2 ≥ 0; ω(x, y2) > 0 for x, y2 > 0 andw(x, 0) = w(0, y2) = 0 for x, y2 > 0.
(H2) d(0) = 0; d(y2) ≥ d′(0)y2 for y2 ≥ 0, with d′(0) > 0.
(H3) m(0) = 0;m(y1) ≥ m′(0)y1 for y1 ≥ 0, withm′(0) > 0.
(H4) ω(x, y2) ≤ ∂ω

∂y2
(x, 0)y2 for x, y2 ≥ 0.

(H5) n(0) ≥ 0 and there is x0 > 0 such that n(x) > 0 for x ∈ (0, x0) and n(x) < 0 for x ∈ (x0,+∞).

Hypothesis (H1) embodies the fact that if there are no prey or no predator individuals, then there is no predation and that
predators will successfully hunt for prey if there is any. Hypotheses (H2) and (H3) are satisfied if d andm are linear or convex
functions and are needed to show that (1) is biologically well-posed, in the sense that [0,∞)3 and (0,∞)3 are invariant sets
for (1). Hypothesis (H4) is satisfied if y2 → ω(x, y2) is a concave function and states that predators compete for prey when
hunting rather than cooperate. However, (H4)may also be satisfied in other situations inwhich y2 → ω(x, y2) is not concave
(see, for instance, Example 3). It is easy to see that (H4) is satisfied for classical prey-dependent predation, as defined in [33]
or [34], in which the functional response f of themature predator depends only on the availability of prey and the predation
rate ω is given by ω(x, y2) = f (x)y2. Hypothesis (H5) implies that there exists a predator-free equilibrium state (x0, 0, 0)
and that the growth of the prey is self-limiting. As this model wishes to accomodate both predator–prey interactions and
disease transmission, we note that (H1) may also be justified on the grounds that if there are no susceptibles or infectives
(no susceptible cells or no viral cells), there is no disease transmission and that (H4) reflects the occurrence of saturation or
crowding phenomena. Also, n(0)maybe either 0 (for predator–preymodels, where if there is no prey then there is no growth
of the prey class, a typical example being n(x) = x(r − ax)), or strictly positive (for disease transmission models, when it is
often assumed that there is a constant supply of susceptible cells or individuals, a typical example being n(x) = λ− dx).
Under these circumstances, one may show that Q1 = [0,∞)3 is an invariant set for (1). That is, all solutions starting in

Q1 remain there for their whole interval of existence. To this purpose, let us define A : R3 → R3 by

A((x1, x2, x3)T ) = (n(x1)− ω(x1, x3), kω(x1, x3)− c1m(x2), c2m(x2)− d(x3))T

and, for a setM ⊂ R3 and x ∈ R3, let us denote

d(x,M) = inf (|x− y|, y ∈ M) .

It is seen that limh→0
d(x+hAx,Q1)

h = 0 for all x ∈ ∂Q1, so Nagumo’s invariance conditions are satisfied and Q1 is an invariant
set for (1). See [35] for further invariance results and for other tangency concepts. See also [36,37] for an application of flow
invariance theory to the study of a parabolic PDE system describing the propagation of HIV in the human body.
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We now show the a-priori boundedness of the solutions of (1). To this purpose, let us note first that since x′ ≤ n(x), it
follows that x(t) ≤ max(x(0), x0) for t ≥ 0, which ensures the boundedness of x. Let us also define

F : R3 → R, F(x, y1, y2) = x+
1
k
y1 +

1
k
c1
2c2
y2.

Computing the time derivative of F along the solutions of (1), we observe that

Ḟ = n(x)−
c1
2k
m(y1)−

1
k
c1
2c2
d(y2) ≤ nM −

c1
2k
m′(0)y1 −

1
k
c1
2c2
d′(0)y2,

where nM is an upper boundedness constant for n. Consequently, it is seen that

Ḟ + dF ≤ nM + dx,

where d = min
(
c1m′(0)
2 , d

′(0)
2

)
, and so

F(x(t), y1(t), y2(t)) ≤ F(x(0), y1(0), y2(0))e−dt + (nM + dmax(x(0), x0))
1− e−dt

d
.

It follows that all solutions of (1) are bounded, and consequently defined on [0,∞).
It is now possible to prove that Q2 = (0,∞)3 is also an invariant set for (1). To this purpose, suppose that

x(0), y1(0), y2(0) are all positive and note that

y′2(t)+ d
′(0)y2(t) ≥ c2m(y1(t)) ≥ 0,

so t → y2(t)ed
′(0)t is increasing and consequently y2 remains strictly positive. Similarly,

y′1(t)+m
′(0)y1(t) ≥ kω(x(t), y2(t)) ≥ 0,

so t → y1(t)em
′(0)t is increasing and consequently y1 remains strictly positive. To prove that x remains also strictly positive,

let us note first that if n(0) > 0, then x′(t) becomes positive when x(t) becomes small, so x(t) cannot reach 0. If n(0) = 0,
we shall argue by contradiction. Suppose that x(t0) = 0 for some t0 > 0. Then one may find ỹ1(0) and ỹ2(0) > 0 both
positive such that the solution which starts at t = 0 from (0, ỹ1(0), ỹ2(0)) also reaches (0, y1(t0), y2(t0)) at t = t0, again
by (H2) and (H3). By the uniqueness property, this solution should coincide with the solution which starts at t = 0 from
(x(0), y1(0), y2(0)), which is a contradiction. Regarding the behavior of the solutions which start on the boundary of Q1, it
is easy to see that the solutions which start in the plane y1Oy2 tend to the origin while remaining in the plane y1Oy2, the
solutions which start on (Ox tend to (x0, 0, 0), the origin may be an (unstable) equilibrium point if n(0) = 0, while all other
solutions starting on the boundary of Q1 enter Q2 and stay there. By (Ox and [Ox we mean the set {(x, 0, 0); x > 0} (the
positive x-semiaxis) and the set {(x, 0, 0); x ≥ 0} (the strictly positive x-semiaxis), respectively.

3. The stability of the x-only equilibrium

Since the equation n(x) = 0 admits a single positive solution x0, it follows that (1) admits a single x-only equilibrium
point (that is, a predator-free or infection-free equilibrium) (x0, 0, 0). We now turn our attention to the issue of its stability.
Let us first define the basic reproduction number of the mature predator population by

R0 = k
c2
c1

∂ω
∂y2
(x0, 0)

d′(0)
. (5)

In this regard, a quick derivation of R0 can be performed along the lines of van den Driessche and Watmough [38], noting
again that, as seen in Example 2, our model can be thought as a generalized SEIR model with a constant population
assumption, so x corresponds to the susceptible class S, y1 corresponds to the exposed class E and y2 corresponds to the
infective class I . Then (1) can be restated asy′1y′2

x′

 = (kω(x, y2)0
0

)
−

( c1m(y1)
−c2m(y1)+ d(y2)
−n(x)+ ω(x, y2)

)
= F − V.

At the x-only equilibrium x0 = (x0, 0, 0), corresponding to the disease-free equilibrium in [38], one has

DF (x0) =
(
F 0
0 0

)
, DV(x0) =

(
V 0
J1 J2

)
,

where the infection matrix F and the transition matrix V are given by

F =

0 k
∂ω

∂y2
(x0, 0)

0 0

 , V =
(
c1m′(0) 0
−c2m′(0) d′(0)

)
.
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Then R0 is the largest eigenvalue of the next generation matrix FV−1, so R0 = ρ(FV−1), from which (5) follows. Note that
for ω(x, y2) = f (x)y2 and d(y2) = d2y2, R0 = k

c2
c1
f (x0)
d , from which the expressions of R0 found for Examples 1 and 2 easily

follow. One then similarly derives the expression of R0 found in Example 3.
Let us now consider the Lyapunov functional

U1(x, y1, y2) =
∫ x

x0

(
1−

∂ω
∂y2
(x0, 0)

∂ω
∂y2
(τ , 0)

)
dτ +

1
k
y1 +

1
k
c1
c2
y2 (6)

under the hypothesis
(H6) x→ ∂ω

∂y2
(x, 0) is increasing and ∂ω

∂y2
(x, 0) > 0 for x > 0.

The first part of (H6) is satisfied if x → ω(x, y2) is increasing for all fixed y2 > 0. As a particular case, (H6) is satisfied
for classical prey-dependent predation, that is, ω(x, y2) = f (x)y2, if the functional response f of the mature predator is an
increasing function of the size of the prey class x and f (x) > 0 for x > 0, as in this case ∂ω

∂y2
(x, 0) = f (x).

We compute the derivative of U1 along the solutions of (1). Using (H2) and (H4), one then has

U̇1 =

(
1−

∂ω
∂y2
(x0, 0)

∂ω
∂y2
(x, 0)

)
(n(x)− ω(x, y2))+

1
k
(kω(x, y2)− c1m(y1))+

1
k
c1
c2
(c2m(y1)− d(y2))

= n(x)

(
1−

∂ω
∂y2
(x0, 0)

∂ω
∂y2
(x, 0)

)
+
1
k
c1
c2
d(y2)

[
∂ω
∂y2
(x0, 0)

∂ω
∂y2
(x, 0)

ω(x, y2)
d(y2)

k
c2
c1
− 1

]

≤ n(x)

(
1−

∂ω
∂y2
(x0, 0)

∂ω
∂y2
(x, 0)

)
+
1
k
c1
c2
d(y2)(R0 − 1).

We note that

n(x)

(
1−

∂ω
∂y2
(x0, 0)

∂ω
∂y2
(x, 0)

)
≤ 0 for x ∈ (0,∞),

due to (H5) and (H6), so

U̇1 ≤
1
k
c1
c2
d(y2)(R0 − 1).

Further, since x→ ∂ω
∂y2
(x, 0) is increasing, it follows that sgn(x− x0) = sgn

(
∂ω
∂y2
(x, 0)− ∂ω

∂y2
(x0, 0)

)
; therefore, (x0, 0, 0) is

a minimum point for U1 and U1(x, y1, y2) ≥ 0 for (x, y1, y2) ∈ Q2. We are now ready to establish our first stability result.

Theorem 3.1. Suppose that R0 ≤ 1 and (H1)–(H5) hold, together with (H6) and the following hypothesis
(H7)

∫ 1
0+

1
∂ω
∂y2

(τ ,0)
dτ = ∞.

Then the x-only equilibrium (x0, 0, 0) is globally asymptotically stable in Q2.

Proof. Letm > 0 and let

Sm = {(x, y1, y2) ∈ Q2;U1(x, y1, y2) < m} .

Let k < m arbitrary and letΩk = {(x, y1, y2) ∈ Q2;U1(x, y1, y2) ≤ k}.
Obviously, U̇1 ≤ 0 inΩk and the equality holds if x = x0 and y2 = 0, or R0 = 1 (note that limx→0 U1(x, y1, y2) = +∞).

In both cases, the only invariant set within the set E =
{
(x, y1, y2) ∈ Ωk; U̇1(x, y1, y2) = 0

}
is the point P(x0, 0, 0), so all

solutions (x(t), y1(t), y2(t)) starting inΩk tend to P as t → ∞ from LaSalle’s invariance principle (see [39] or [40]). Since
k < mwas arbitrary, the conclusion follows. �

Note that (H7) is again satisfied ifω(x, y2) = f (x)y2 and
∫ 1
0+

1
f (x)dx = +∞, which is the case, for instance, if f is a Holling

type II functional response, f (x) = bx
1+mx . Also, Theorem 3.1 leads to the following global stability results.

Corollary 3.2. If R0 ≤ 1, then the predator-free equilibrium
( r
a , 0, 0

)
of (2) is globally asymptotically stable in (0,∞)3.

Corollary 3.3. If R0 ≤ 1, then the virus-free equilibrium
(
λ
d , 0, 0

)
of (3) is globally asymptotically stable in (0,∞)3.

4. The uniform persistence of the system

To complement Theorem 3.1, we now investigate the persistence of (1). In this regard, it is said that (1) is uniformly
persistent on D if there is ε0 > 0 (not depending on the initial data) such that any solution of (1) which starts in
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(x(0), y1(0), y2(0)) ∈ Int(D) satisfies

lim inf
t→∞

x(t) ≥ ε0, lim inf
t→∞

y1(t) ≥ ε0, lim inf
t→∞

y2(t) ≥ ε0.

Obviously, the uniformpersistence of the system excludes the stability of (x0, 0, 0) in any sense. Froma biological viewpoint,
the uniform persistence of the system ensures the long-term coexistence of all populations, none of them facing extinction.
Let us define

V (x, y1, y2) = y1 +
c1
c2
y2.

It follows that the derivative of V along the solutions of (1) is given by

V̇ =
c1
c2
d(y2)

[
k
c2
c1

ω(x, y2)
d(y2)

− 1
]
.

We are now ready to formulate our persistence result.

Theorem 4.1. In addition to (H1)–(H5), suppose that

(H8) k c2c1
ω(x,y2)
d(y2)

− 1 > 0 for (x, y) ∈ (xL, xR)× (0, ε), where x0 ∈ (xL, xR).

Then (1) is uniformly persistent and (x0, 0, 0) is unstable, with (Ox as its stable manifold.

Proof. From (H8), we know that V̇ > 0 on a vicinity of (x0, 0, 0) ∩ Q1, except for points with y2 = 0. It follows that any
solution which starts in this vicinity goes away from (x0, 0, 0) except for those starting with y1 = y2 = 0, which tend to
(x0, 0, 0) (those which start with y2 = 0 but y1 > 0 enter Q2). Subsequently, the unique compact invariant sets on ∂Q1
are (x0, 0, 0) and (possibly, if n(0) = 0) (0, 0, 0), their stable manifolds being (Ox and {(0, 0, 0)}, respectively. The use of
Theorem 4.1 in [41] finishes the proof. For an alternate approach, based on a result of Fonda [42], see [43] or [25]. �

In particular, (H8) implies that R0 > 1 and if
ω(x,y2)
d(y2)

is a function only of the variable x, as is the case when ω(x, y2) =
f (x)y2 and d(y2) = d2y2, (H8) is actually equivalent to R0 > 1. The following results then hold.

Corollary 4.2. If R0 > 1, then (2) is uniformly persistent and the predator-free equilibrium
( r
a , 0, 0

)
is unstable, with (Ox as its

stable manifold.

Corollary 4.3. If R0 > 1, then (3) is uniformly persistent and the virus-free equilibrium
(
λ
d , 0, 0

)
is unstable, with (Ox as its

stable manifold.

5. The existence of positive equilibria

Wenow try to establish some sufficient conditions for the existence of a positive equilibrium (x∗, y∗1, y
∗

2). To this purpose,
we note that x∗, y∗1 , and y

∗

2 must satisfy

n(x∗) = ω(x∗, y∗2), kω(x∗, y∗2) = c1m(y
∗

1), c2m(y∗1) = d(y
∗

2). (7)

To solve (7), let us define

F : [0,∞)2 → R, F(x, y2) = n(x)−
1
k
c1
c2
d(y2);

G : [0,∞)2 → R, G(x, y2) = ω(x, y2)−
1
k
c1
c2
d(y2)

=
1
k
c1
c2
d(y2)

[
k
c2
c1

ω(x, y2)
d(y2)

− 1
]
.

With these notations, it is easy to see that the equalities F(x∗, y∗2) = 0, G(x
∗, y∗2) = 0 should be satisfied. Let us assume that

the following hypotheses hold.

(E1) x→ ω(x, y2) is increasing for all fixed y > 0.
(E2) The equation k c2c1ω(x, y2) = d(y2) has a unique solution x = ϕ(y2) for all fixed y2 ∈

(
0, nMk

c2
c1

1
d′(0) + ε

]
, where ε > 0.

Moreover, the function ϕ is increasing.

Let us note again that if (E1) holds, then x→ ∂ω
∂y2
(x, 0) is increasing and that (E1) holds ifω(x, y2) = f (x)y2, with f increasing.

Also, if ω(x, y2) = f (x)y2 and d(y2) = d2y2, as is the case in Example 1, then the equation k
c2
c1
ω(x, y2) = d(y2) reduces to

k c2c1 f (x) = d2, which always has a unique solution x
∗, 0 < x∗ < x0, if R0 > 1, irrespective of y2. In this particular case, ϕ is

constant. If ω(x, y2) = µe−my2xy2 and d(y2) = γ y2, as it is the case in Example 3, then the equation k
c2
c1
ω(x, y2) = d(y2)

reduces to k c
c+d1

µe−my2x = γ , which always has a unique solution x = γ

k
c+d1
c

1
µ
emy2 . In this case, ϕ is nonconstant.
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Note, however, that (E1) precludes the use of our stability results to the situations in which the feeding behavior of the
mature predator is described by a Monod–Haldane (Holling type IV) functional response

(
f (x) = cx

m2+bx+x2

)
, which is not

monotonic as a function of x.

Theorem 5.1. Suppose that (H1)–(H5) hold, together with (E1):
1. if (E2) holds and R0 > 1, then (1) has positive equilibria;
2. if R0 ≤ 1, then there is no positive equilibrium for (1).

Proof. First, we note that the equation F(x, y2) = 0 defines a continuous curve γ in the first quadrant of the plane xOy2.
Note also that for a fixed y2 there might be several solutions (x, y2) of this equation. Further, all points of this curve have
their x-coordinate in [0, x0], since n(x) < 0 for x > x0 and, due to (H2), the y-coordinate belongs to the bounded interval[
0, nMk

c2
c1

1
d′(0)

]
. This curve crosses (Ox uniquely at (x0, 0), while if n(0) = 0 the curve crosses [Oy2 uniquely at (0, 0). If

n(0) > 0, then the curve crosses [Oy2 uniquely at (0, y∗), where y∗ > 0. Here, (Ox and [Oy2 refer to the strictly positive
x-semiaxis and the positive y2-semiaxis of the plane xOy2 (the sets {(x, 0); x > 0} and {(0, y2); y2 ≥ 0}, respectively).
Now, due to (E2), the equation G(x, y2) = 0 has a unique solution x = ϕ(y2) for all fixed y2. Furthermore, ϕ increases.

Since ϕ is well-defined outside
[
0, nMk

c2
c1

1
d′(0)

]
, a necessary and sufficient condition for the existence of the positive

equilibrium is that x0 > L = limy2→0 ϕ(y2).
If R0 > 1, since

lim
y2→0

k
c2
c1

ω(x0, y2)
d(y2)

= k
c2
c1

∂ω
∂y2
(x0, 0)

d′(0)
= R0 > 1

and x→ ω(x, y2) increases for all y2, it follows that x = ϕ(y2) < u < x0 for y2 small enough and u close to x0. Consequently,
limy2→0 ϕ(y2) < x0 and there are positive equilibria.
If R0 ≤ 1, one then has due to (H2) and (H4) that

G(x, y) =
1
k
c1
c2
d(y2)

[
k
c2
c1

ω(x, y2)
d(y2)

− 1
]

≤
1
k
c1
c2
d(y2)

[
k
c2
c1

∂ω
∂y2
(x, 0)

d′(0)
− 1

]

≤
1
k
c1
c2
d(y2)

[
k
c2
c1

∂ω
∂y2
(x, 0)

d′(0)
− R0

]

=
d(y2)
d′(0)

[
∂ω

∂y2
(x, 0)−

∂ω

∂y2
(x0, 0)

]
so ∂ω

∂y2
(x, 0) ≥ ∂ω

∂y2
(x0, 0) for all x = ϕ(y2), which implies that x ≥ x0. Consequently, the curves F(x, y2) = 0 andG(x, y2) = 0

have no positive contact (x∗, y∗2).
Furthermore, sincem(0) = 0 and limy1→∞m(y1) = +∞ from (H3), it follows that the equationm(y1) =

1
c2
d(y∗2) has at

least a positive solution y∗1 . �

Note, however, that the above hypotheses do not ensure the uniqueness of the positive equilibrium, since the curves
defined by F(x, y2) = 0 and G(x, y2) = 0 can cross several times, one particular reason being the fact that the curve defined
by F(x, y2) = 0 may not even be the graph of a function. Further, the equation m(y1) = 1

c2
d(y∗2) can have more than one

solution. However, if R0 > 1, ω(x, y2) = f (x)y2, d(y2) = d2y2 and m is strictly monotonic, then the positive equilibrium
(x∗, y∗1, y

∗

2) is unique. One then obtains the following results.

Corollary 5.2. If R0 > 1, then (2) has a unique positive equilibrium. If R0 ≤ 1, then there is no positive equilibrium of (2).

Corollary 5.3. If R0 > 1, then (3) has a unique positive equilibrium. If R0 ≤ 1, then there is no positive equilibrium of (3).

6. The stability of the positive equilibria

In this section, we assume that the system (1) admits (at least) a positive equilibrium (x∗, y∗1, y
∗

2) and study its stability.
We also assume that the following sign and divergence conditions hold

(m(y)−m(y∗1))(y− y
∗

1) > 0 for y 6= y∗1, y ≥ 0
(ω(x, y2)− ω(x∗, y2))(x− x∗) > 0 for x 6= x∗, y2 > 0
(ω(x∗, y2)− ω(x∗, y∗2))(y2 − y

∗

2) > 0 for y 6= y∗2
(S)
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and ∫ 1

0+

1
ω(τ, y2)

dτ = +∞,
∫ 1

0+

1
m(τ )

dτ = +∞,
∫ 1

0+

1
ω(x, τ )

dτ = +∞ for all fixed x, y2 > 0. (D)

Note that the sign conditions (S) are satisfied ifm strictly increases, x→ ω(x, y2) strictly increases for all fixed y2 > 0, and
y2 → ω(x∗, y2) also strictly increases. We consider the Lyapunov functional

U2(x, y1, y2) =
∫ x

x∗

ω(τ, y∗2)− ω(x
∗, y∗2)

ω(τ , y∗2)
dτ +

1
k

∫ y1

y∗1

m(τ )−m(y∗1)
m(τ )

dτ +
1
k
c1
c2

∫ y2

y∗2

ω(x∗, τ )− ω(x∗, y∗2)
ω(x∗, τ )

dτ . (8)

Here (x∗, y∗1, y
∗

2) is a minimum point for U2, U2(x, y1, y2) increases whenever any one of |x−x
∗
|, |y1−y∗1|, |y2−y

∗

2| increases
and U2(x, y1, y2) ≥ 0 for all (x, y1, y2) > 0. Also, if any one of the variables x, y1, and y2 tends to 0, then U2(x, y1, y2) tends
to∞, due to the divergence conditions (D). It then follows that the level sets of U2 have no limit points on the boundary of
Q1.
We now compute the derivative of U2 along the solutions of (1).

Lemma 6.1. The time derivative of U2 along the solutions of (1) is given by

U̇2(x, y1, y2) =
[
n(x)

(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
− n(x∗)

(
1−

ω(x∗, y2)
ω(x, y2)

)]
+ω(x∗, y∗2)

[
3−

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

]
+ω(x∗, y∗2)

[
ω(x, y2)
ω(x, y∗2)

−
d(y2)
d(y∗2)

+
ω(x∗, y∗2)
ω(x∗, y2)

d(y2)
d(y∗2)

− 1
]
. (9)

Proof. We have

U̇2(x, y1, y2) =
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
(n(x)− ω(x, y2))+

1
k

(
1−

m(y∗1)
m(y1)

)
(kω(x, y2)− c1m(y1))

+
1
k
c1
c2

(
1−

ω(x∗, y∗2)
ω(x∗, y2)

)
(c2m(y1)− d(y2))

= n(x)
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
+
ω(x∗, y∗2)
ω(x, y∗2)

ω(x, y2)−
m(y∗1)
m(y1)

ω(x, y2)

+
c1
k
m(y∗1)−

1
k
c1
c2
d(y2)−

1
k
c1
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)+
1
k
c1
c2

ω(x∗, y∗2)
ω(x∗, y2)

d(y2).

Using the equilibrium relations (7), it follows that

U̇2(x, y1, y2) = n(x)
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
+
ω(x∗, y∗2)
ω(x, y∗2)

ω(x, y2)−
m(y∗1)
m(y1)

ω(x, y2)+ ω(x∗, y∗2)

−
1
k
c1
c2
d(y2)−

1
k
c1
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)+
1
k
c1
c2

ω(x∗, y∗2)
ω(x∗, y2)

d(y2)

= n(x)
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
+ ω(x∗, y∗2)

(
1−

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

)
+
ω(x∗, y∗2)
ω(x, y∗2)

ω(x, y2)+ ω(x∗, y∗2)
ω(x∗, y2)
ω(x, y2)

+
1
k
c1
c2

ω(x∗, y∗2)
ω(x∗, y2)

d(y2)−
1
k
c1
c2
d(y2).

Consequently,

U̇2(x, y1, y2) = n(x)
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
+ ω(x∗, y∗2)

(
3−

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

)
+

(
ω(x∗, y∗2)

ω(x∗, y2)
ω(x, y2)

− ω(x∗, y∗2)
)
+

(
ω(x∗, y∗2)
ω(x, y∗2)

ω(x, y2)−
1
k
c1
c2
d(y2)

)
+

(
1
k
c1
c2

ω(x∗, y∗2)
ω(x∗, y2)

d(y2)− ω(x∗, y∗2)
)
.
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This implies that

U̇2(x, y1, y2) =
[
n(x)

(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
− ω(x∗, y∗2)

(
1−

ω(x∗, y2)
ω(x, y2)

)]
+ω(x∗, y∗2)

[
3−

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

]
+

(
ω(x∗, y∗2)

ω(x, y2)
ω(x, y∗2)

−
ω(x∗, y∗2)
d(y∗2)

d(y2)+
ω(x∗, y∗2)
ω(x∗, y2)

ω(x∗, y∗2)
d(y2)
d(y∗2)

− ω(x∗, y∗2)
)

=

[
n(x)

(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
− n(x∗)

(
1−

ω(x∗, y2)
ω(x, y2)

)]
+ω(x∗, y∗2)

[
3−

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

]
+ω(x∗, y∗2)

[
ω(x, y2)
ω(x, y∗2)

−
d(y2)
d(y∗2)

+
ω(x∗, y∗2)
ω(x∗, y2)

d(y2)
d(y∗2)

− 1
]

which finishes the proof. �

Note that the AM–GM inequality, which says that the algebraic mean is not smaller than the arithmetic mean, implies
that

3−
m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

−
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

−
ω(x∗, y2)
ω(x, y2)

≤ 0 (10)

with equality if and only if

m(y∗1)
m(y1)

ω(x, y2)
ω(x∗, y∗2)

=
ω(x∗, y∗2)
ω(x∗, y2)

m(y1)
m(y∗1)

=
ω(x∗, y2)
ω(x, y2)

= 1. (11)

It is then seen that the stability of the positive equilibrium (x∗, y∗1, y
∗

2) is determined by the signs of the first and third terms
in the right-hand side of (9). If both terms are negative, then the time derivative of U2 is the negative in the phase space of
(1) and one may derive the local stability of (x∗, y∗1, y

∗

2) from LaSalle’s invariance principle, as seen in the following result.

Theorem 6.2. Assume that (H1)–(H4) are satisfied, together with (S) and (D), and there are xL, xR, yL, yR, x∗ ∈ (xL, xR),
y∗2 ∈ (yL, yR) such that the inequalities

n(x)
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
− n(x∗)

(
1−

ω(x∗, y2)
ω(x, y2)

)
≤ 0 (12)

and

ω(x, y2)
ω(x, y∗2)

−
d(y2)
d(y∗2)

+
ω(x∗, y∗2)
ω(x∗, y2)

d(y2)
d(y∗2)

− 1 ≤ 0 (13)

hold for all x ∈ (xL, xR), y2 ∈ (yL, yR). Define

α = min
(
U2(xL, y∗1, y

∗

2),U2(xR, y
∗

1, y
∗

2),U2(x
∗, y∗1, yL),U2(x

∗, y∗1, yR)
)
.

Then (x∗, y∗1, y
∗

2) is locally asymptotically stable and its domain of attraction includes the set

Sα = {(x, y1, y2) ∈ Q2;U2(x, y1, y2) < α} .

Proof. Let k < α arbitrary and Ωk = {(x, y1, y2) ∈ Q2;U2(x, y1, y2) ≤ k}. Since U2(x, y1, y2) ≥ U2(x, y∗1, y
∗

2) and
U2(x, y1, y2) ≥ U2(x∗, y∗1, y2), it follows that all (x, y1, y2) ∈ Ωk have the property that xL < x < xR, yL < y2 < yR.
Obviously, U̇2 ≤ 0 inΩk and the equality holds if and only if the equalities in (11), (12) and (13) also hold. It now remains
to find the invariant set Ẽ2 within the set

E2 =
{
(x, y1, y2) ∈ Ωk; U̇2(x, y1, y2) = 0

}
.

First of all, one deduces from the last relation in (11) and the sign conditions that x = x∗. Substituting in the first part of
(11), one obtains that m(y1)m(y∗1)

=
ω(x∗,y2)
ω(x∗,y∗2)

. Since x = x∗ on Ẽ2, it follows that n(x∗) = ω(x∗, y2) on Ẽ2, so
m(y1)
m(y∗1)
=

ω(x∗,y2)
ω(x∗,y∗2)

= 1 on

Ẽ2, and from the sign conditions we obtain that y1 = y∗1 . This implies that ω(x
∗, y2) = ω(x∗, y∗2) and consequently one gets

from the sign conditions that y2 = y∗2 . It follows from LaSalle’s invariance principle that all solutions (x(t), y1(t), y2(t)) of
(1) starting inΩk tend to (x∗, y∗1, y

∗

2) as t →∞. Since k < α was arbitrary, the conclusion follows. �
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A fewcomments on the feasibility of (12) and (13) are perhaps in order. First of all, ifω(x, y2) = f (x)g(y2) and d(y2) = cy2,
then (13) reduces to(

g(y2)
g(y∗2)

−
y2
y∗2

)(
1−

g(y2)
g(y∗2)

)
≤ 0. (14)

If g(y2) = y2, as is the case for Examples 1 and 2,(
g(y2)
g(y∗2)

−
y2
y∗2

)(
1−

g(y2)
g(y∗2)

)
≡ 0,

so (13) is trivially satisfied. If g(y2) = y2e−my2 , as is the case for Example 3, then (14) reduces to

emy2

y∗2

(
y2
emy2
−
y∗2
emy
∗
2

)(
emy
∗
2

emy2
− 1

)
≤ 0,

which is satisfied if y2, y∗2 belong to the interval
(
0, 1m

)
on which g increases.

However, (12) has less chances to be satisfied, at least for models describing predator–prey interactions. This happens
since putting y2 = y∗2 in (12) yields

(n(x)− n(x∗))
(
1−

ω(x∗, y∗2)
ω(x, y∗2)

)
≤ 0. (15)

Since sgn(ω(x, y∗2)− ω(x
∗, y∗2)) = sgn(x− x

∗) from (S), it follows that necessarily

(n(x)− n(x∗))(x− x∗) ≤ 0, (16)

which in some situationsmay not hold even locally (if x∗ belongs to an interval onwhich n increases, for instance). However,
(16) holds if x belongs to an interval on which n decreases. This is always the case if n(x) = λ− dx, as in Example 2, which
leads to global stability properties, but if n(x) = x(r − ax), as in Example 1, one needs to restrict the domain of attraction in
order to ensure that the x-coordinate belongs to

( r
2a ,+∞

)
(to assume that the persistency constant for x is larger than r

2a ,
that is). The following stability results may then be obtained as consequences of Theorem 6.2.

Corollary 6.3. If R0 > 1 and lim inft→∞ x(t) > r
2a , then the positive equilibrium of (2) is unique and globally asymptotically

stable on (0,∞)3.

Corollary 6.4. If R0 > 1, then the positive equilibrium of (3) is unique and globally asymptotically stable on (0,∞)3.

Corollary 6.5. If R0 > 1, lim inft→∞ x(t) > K
2 and lim inft→∞ y2(t) <

1
m , then the positive equilibrium of (4) is unique and

globally asymptotically stable on (0,∞)3.

As a side effect, note that Corollary 6.5 implies that the positive (endemic) equilibrium of (4) has less chances to be stable
if the media coveragem is large, that is, media coverage is a positive factor towards the containment of a disease.
Finally let us now finally consider the case of ratio-dependent predation, that is, the case in which ω(x, y2) =

bxy2
my2+x

, for
d(y2) = d2y2 and n(x) = x(r − ax). In this situation, (13) reduces to

m(y2 − y∗2)(xy
∗

2 − x
∗y2)

y∗2(my2 + x)(my
∗

2 + x∗)
≤ 0, (17)

while (12) reduces to

m(x− x∗)
x

[
x(r − ax)y∗2
my∗2 + x∗

−
x∗(r − ax∗)y2
my2 + x∗

]
≤ 0. (18)

However, for x = x∗ + ε1, y2 = y∗2 + ε2, (17) reduces to

mε2(ε1y∗2 − ε2x
∗)

y∗2(my2 + x)(my
∗

2 + x∗)
≤ 0,

which has no chance to be satisfied for all ε1, ε2 ∈ (−ε, ε), where ε is a small parameter. Consequently, ratio-dependent
predation does not seem to fit into our theoretical framework.

7. Discussion and concluding remarks

In the previous sections, we have analyzed the stability of the equilibria and the persistence of the general stage-
structured system,
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x′ = n(x)− ω(x, y2),
y′1 = kω(x, y2)− c1m(y1),
y′2 = c2m(y1)− d(y2),

in terms of conditions (H1)–(H8), (E1), (E2), (S) and (D), whose biological significance has also been discussed. It has been
found that the basic reproduction number of the predator population, defined as

R0 = k
∂ω

∂y2
(x0, 0)

c2
c1

1
d′(0)

is a threshold parameter for the stability of the system and the local stability of the positive equilibrium can be obtained
under two feasible conditions (12) and (13) which involve n, ω and d. One may also associate a transparent biological
interpretationwithR0. Specifically, the first term k ∂ω∂y2 (x0, 0) represents the average number of newborn immature predators
per mature predator introduced in a predator-free environment and per unit time, while the second term c2

c1
represents the

probability that an immature predator will survive to adulthood. The third term, 1
d′(0) , has no direct interpretation for the

initial system, as the equation y′2(t) = −d(y2(t)) cannot be integrated explicitly for general d’s, but it represents the average
time spent by a predator in themature stage if the third equation is replaced with its linearization near y2 = 0, namely with
y′2 = m(y1)− d

′(0)y2. Consequently, R0 approximates the mean number of offsprings per every mature predator. Note that
the basic reproduction number R0 does not depend uponm.
The practical applicability of this theoretical framework has also been discussed and it has been observed that, for certain

particular but significant cases, our analysis yields global stability results, although ratio-dependent predation does not fall
within the scope of our results.
The Lyapunov functional U2 which is used to study the stability of the positive equilibrium is a generalisation of the

functional V (x, y) = dx
(
x− x∗ − ln x

x∗
)
+ dy

(
y− y∗ − ln y

y∗

)
used by Volterra in [1]. Note that if ω(x, y) = bxy and

m(y1) = y1, then

U2 = x− x∗ − x∗ ln
x
x∗
+
1
k

(
y1 − y∗1 − y

∗

1 ln
y1
y∗1

)
+
1
k
c1
c2

(
y2 − y∗2 − y

∗

2 ln
y2
y∗2

)
.

Note also the difference between the Lyapunov functional U1 used to study the stability of the x-only equilibrium and the
corresponding functional used by Korobeinikov in [9]. It is easy to see that our considerations can be extended to models in
whichpredators pass through p > 2 life stages, as long as prey consumption occurs in the last stage, or to disease propagation
models in which the exposed individuals pass through p > 2 latent stages.
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