
Physica A 562 (2021) 125321

c
e

o
t
c
m
a
r
o

m

h
0

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

The stochastic evolution of a rumor spreadingmodel with two
distinct spread inhibiting and attitude adjustingmechanisms
in a homogeneous social network
Ming Li a, Hong Zhang a, Paul Georgescu b,∗, Tan Li c
a School of Economics and Management, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China
b Department of Mathematics, Technical University of Iaşi, Bd. Copou 11A, 700506 Iaşi, Romania
c School of Innovation and Entrepreneurship, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, PR China

a r t i c l e i n f o

Article history:
Received 25 September 2019
Received in revised form 19 August 2020
Available online xxxx

Keywords:
Rumor spreading
Basic influence number
Inhibiting and adjusting mechanisms
Deterministic model
Stochastic model

a b s t r a c t

In this paper, we propose and analyze from a stability viewpoint a deterministic,
ODE-based class of rumor spreading models with two distinct inhibiting and adjusting
mechanisms, together with its corresponding stochastic counterpart. For the deter-
ministic model, a threshold parameter R0 defined ad hoc, called the basic influence
number, is used to ascertain whether the rumors are prevailing or not. If R0 < 1, the
rumor-free equilibrium is found to be locally asymptotically stable, while if R0 > 1
it is shown that there is at least one additional rumor-prevailing equilibrium, which
is necessarily locally asymptotically stable. For the stochastic model, we first show
that there exists a unique global solution. Subsequently, we investigate the asymptotic
behavior of the stochastic system around the equilibria of the deterministic system
by constructing suitable Lyapunov functionals. Furthermore, numerical simulations are
given to illustrate, support and enhance our theoretical analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Rumors, the oldest form of mass media, are defined in [1] as being improvised news resulting from a process of
ollective discussion. Typically, rumors spread at first between close friends or by means of other similar informal
ncounters, before making their way, often reshaped or distorted, into public discourse.
Certain rumors spread faster since they are targeting deep insecurities, making people uncertain of outcomes, afraid

f consequences and distrustful of real, truthful information. For instance, there are rumors in circulation which allege
hat high-speed 5G cellular technology is to blame for the rapid spread of COVID-19, that the spread of the Zika virus is
aused by genetically modified mosquitoes and that microcephaly is caused by vaccines, which, via ever-shifting alleged
echanisms, also cause autism. Other rumors, especially popular in West Africa, allege that Ebola can be contracted from
motorcycle helmet. The ‘‘Obama is a Muslim’’ rumor, built upon questions caused in part by his middle name, was a
ecurrent theme of the 2008 US presidential elections and reverberated for a long time, as a 2014 poll showed that 54%
f the (Republican) subjects believed that ‘‘deep down’’ Obama was a Muslim.
To understand the impact of rumor spreading, it is useful to investigate the dynamical behavior of appropriate

athematical models which are often not unlike disease propagation models. The research on rumor spreading models
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tarted in the 1960s. In their seminal papers [2,3], Daley and Kendall compared the difference between the basic tenets of
model of virus transmission and those of a model of rumor spreading, proposing their classical compartmental model
f rumor spreading. This model keeps track of three compartments: ignorants, spreaders and stiflers and assumes that an
gnorant should absolutely become a spreader upon hearing a rumor, which is not always factual.

Since then, the DK model has been actively modified and expanded, leading to a more accurate account of rumor
preading. Maki and Thompson [4] developed a model which allowed for a more nuanced interaction between ignorants,
preaders and stiflers. Zanette [5,6] proposed a rumor propagation model on a small-world network and performed
imulations for the MT model. In 2004, Moreno et al. [7] studied the stochastic properties of the MT model on scale-
ree networks by means of Monte Carlo simulations. In 2008, Kawachi [8] established global behavior patterns for rumor
ropagation models that also extended the classical DK model. In 2014, Afassinou [9] considered the influence of education
ate of the population, which led to the proposal of a susceptible, educated, infected, and recovered (SEIR) rumor spread
model.

Recently, other mechanisms aiming at a fine-grained description of rumor spreading, such as forgetting mechanisms
(Zhao et al. [10]), incubation mechanisms (Al-Tuwairqi et al. [11]), hesitation mechanisms (Xia et al. [12]), punishment and
control by the government (Li and Ma [13], Zhao and Wang [14]), memory effects (Zhang and Xu [15]), different probabil-
ities for spreaders to become stiflers (Zhao et al. [16]), have attracted the attention of various authors. In addition, a rumor
spreading model accounting for two distinct rumors spreading simultaneously in a target population was proposed and
investigated by Wang et al. [17]. In 2017, Zhu and Wang [18] used a modified susceptible–infected–removed (SIR) model
to characterize the dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks, taking also
variation of connectivity into consideration. In 2018, Hu et al. [19] established a Susceptible–Hesitating–Affected–Resistant
(SHAR) model incorporating different attitudes towards rumor spreading. Zhu and Wang [20] investigated a rumor
diffusion model accounting for the uncertainty of human behavior, in a spatio-temporal diffusion framework. Zan [21]
studied two types of double-rumors spreading models: the DSIR (‘‘double’’ SIR) model and the C-DSIR (comprehensive
DSIR) model. Recently, Horst [22] pointed out that rumor spreading agents change their activities at random points in
time, at a rate that depends on the current state of a designated neighborhood and on the average choice throughout the
entire population, making a case for the use of stochastic models to describe rumor spreading.

Rumors can destroy confidence, affect self-esteem and even ruin reputations. They may also lead to anxiety, depression,
suicidal thoughts and to a host of other issues. Rumors can alienate friends and lead to ostracization and other forms of
relational aggression. On a societal level, the rise and ubiquity of social media led to an increase in the exposure of users
to unsubstantiated rumors, fake news, defined as fabricated information that mimics news media content in form but not
in organizational process or intent (Lazer et al. [23]), extremely biased news, conspiracy theories and to other forms of
misinformation, which became more and more pervasive. In online social media, social-cognitive biases such as selective
exposure and confirmation bias helped the emergence of echo chamber-like communities consisting of opinionated, like-
minded (or perhaps hive-minded) users sharing similar beliefs about polarizing topics and avoiding communication with
those who have opposite views. These communities are prone to spreading information aligning with these beliefs in
sharing cascades, without a substantive veracity check (Wang et al. [24], Bovet and Makse [25], Liu et al. [26]). By analyzing
a dataset of tweets collected during the 5 months preceding the US 2016 presidential elections, Bovet and Makse [25]
found that 25% of these tweets spread either fake or extremely biased news. Also, it has been determined in Del Vicario
et al. [27] that, for two distinct types of online communities, homogeneity and polarization are the main determinants
for predicting the sizes of sharing cascades.

One of important responsibilities of any governmental body is then to put in place effective measures to control the
spread of rumors, thereby containing and minimizing any harm they may cause. However, inhibiting and clarifying all
sorts of ubiquitous rumors on social networks is often a long-term process, requiring a stable, sustained budget input.
In our model of rumor spreading, we attempt to introduce two spread inhibiting and attitude adjusting mechanisms,
which depend only upon governmental input, acting towards reducing rumor spreading from spreaders to newcomers and
changing the attitude of spreaders, respectively. We then discuss the effects of the qualitative properties of the inhibiting
and adjusting functions, respectively, upon rumor spreading, with a view towards contributing to a better understanding
of the mechanisms of rumor spreading and providing the governmental bodies and the public with significant insights
for rumor control.

This paper is organized as follows. In Section 2, we introduce a deterministic model for rumor spreading which
accounts for two inhibiting and adjusting mechanisms. In Section 3, the stability properties of the deterministic model
are characterized in terms of a basic influence number, viewed as a threshold parameter. In Section 4, we propose the
corresponding stochastic model and discuss its asymptotic behavior around the equilibria of the deterministic system. In
Section 5, we illustrate, support and enhance our results via numerical simulations. Several concluding remarks are given
in Section 6.

2. The deterministic model

It is well known that an undirected graph G = (V , E), where V represents a set of nodes and E represents a set of sides,
can be obtained from a social network consisting of N individuals if the individuals and the contacts between them are
considered as nodes and sides, respectively. The size of the total population which is subject to mechanisms for rumor
2
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Fig. 1. Structure of the model with inhibiting mechanisms for the rumor spreading process.

ontrol is understood to be variable and is denoted at time t by N(t). This population is subdivided into three categories:
newcomer (S), spreader (I) and stifler (R). Upon hearing a rumor, the newcomer, who has no previous information about
that rumor, may subsequently display two different attitudes. Specifically, certain individuals will choose not to spread
the rumor or not to believe it (stiflers), while other individuals will actively spread it (spreaders). After a newcomer hears
the rumor through the contact with a spreader at a rate ᾱ, it then has two possible choices: to become a spreader with
probability θ1, or to become a stifler with probability 1 − θ1. Once a rumor spreads in a social network, the government
then has the authority to use inhibiting and adjusting mechanisms, whose strength and resources are quantified through
the use of the inhibitor variable U , to contain the various damages caused by the rumors.

The movement of individuals from one class to another, given in Fig. 1, is supposed to be unidirectional, which means
the flowchart is irreversible. We assume that the flow into the newcomer class is constant and denoted by Λ and denote
the constant leaving rate of each non-inhibitor compartment by µ. The constant Γ represents the allotted budgeting
ate by the government for adjusting and inhibiting mechanisms and e is the decay rate of those mechanisms. At any
ime, certain spreaders adjust their attitude towards spreading rumors as a result of the constant governmental work to
mprove the mechanisms for clarifying and inhibiting rumors, thereby becoming stiflers at a rate g(U).

For the sake of simplicity, we consider only rumors spreading through human contacts, rather than rumors spreading
hrough the media, which motivate our use of an augmented SIR-like model. We now introduce our mathematical model,
hich involves different attitudes towards rumors and two distinct mechanisms for rumor control, in the following form

dS
dt

= Λ − ᾱk̄SIf (U) − µS,

dI
dt

= θ1ᾱk̄SIf (U) − g(U)I − µI,

dU
dt

= Γ − eU −
δIU

K + U
,

dR
dt

= (1 − θ1)ᾱk̄SIf (U) + g(U)I − µR.

(1)

Here, the functions f and g stand for the effects of rumor control mechanisms upon attenuating rumor spreading to
newcomers and changing the attitudes of spreaders, respectively. Also, k̄(≥ 2) denotes the average degree of the network.
he constants δ and K quantify the usage of the inhibitor, δ being the maximal uptake rate of I and K being a half-
aturation parameter. The resulting uptake rate of the inhibitor δU

K+U is increasing (the more the inhibitor is available, the
higher the uptake rate is) and saturates for large U . Assume that the C1 function f : [0, ∞) → R satisfies

(f.i) f (U) ≥ 0, f (0) = 1;

(f.ii) f is non-increasing on [0, ∞).

Assumption (f.i) represents the fact that the interaction between newcomers and spreaders leads to a decrease in the
number of newcomers, some of them becoming either spreaders of stiflers, and that the function f is normalized (f (0) = 1
means that the mechanisms for the inhibition of rumor spreading are not active), the strength of the interaction between
newcomers and spreaders being also quantified through the use of the parameter ᾱ. In fact, f (0) = 1 is a modeling
assumption (a description of the control mechanism), which is not actually needed for any of our proofs. Assumption
(f.ii) describes that the attempts to control rumor spreading do not backfire (more of the inhibitor U leads to less rumor
spreading). Also, the C1 function g : [0, ∞) → R satisfies

(g.i) g(U) ≥ 0;

(g.ii) g is non-decreasing on [0, ∞);
3
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g.iii) limU→∞ g(U) ≤ ḡ .

Assumption (g.i) represent the fact that the use of rumor control mechanisms does indeed change the attitude of
spreaders, while assumption (g.ii) signifies that the attempts to adjust attitudes do not backfire either (more of the
inhibitor U leads to more spreaders changing their attitudes). Assumption (g.iii) describes the fact that the attitude
adjustment mechanisms eventually saturate. Let us also assume that

(fg.i) fg + µf is non-decreasing on [0, ∞).

While assumptions (f.i-ii) and (g.i-iii) stem from social considerations, the motivation for assumption (fg.i) is purely
mathematical, as it is employed only to ensure the local stability of the rumor-prevailing equilibrium. If f ≡ 1, then (fg.i)
is trivially satisfied, since it reduces just to g being non-decreasing on [0, ∞) (that is, to (g.ii)).

Remark 2.1. An example of a function f modeling the inhibiting mechanisms, which satisfies assumptions (f.i) and (f.ii)
is f (U) =

A+Be−U

A+B , A ≥ 0, B > 0, while an example of a function g modeling the adjusting mechanisms which satisfy
assumptions (g.i-iii) is g(U) =

AU
B+U , A, B > 0. However, there are many other possible examples, as the assumptions have

been kept to a minimum. Further efforts should go into determining more specific forms or sets of assumptions for each
function, which will allow us to further refine and analyze our stability results.

Remark 2.2. We view U as a variable ‘‘proxying’’ (sort of) the rumor control. That is, U can model the resources of an
rganization mandated by the government to deal with rumor control (but we do not want to limit ourselves just to
his interpretation). There is a (constant) growth of resources due to government budgeting, an uptake of resource in
hich each subject (spreader) is allotted (in average) an amount of resources which increases as more resources become
vailable and a decay of resource (interpretable, for instance, as administrative costs).

. A qualitative analysis of the deterministic model

.1. The positive invariance

Having in view the social significance of the variables, we are interested only in solutions that are nonnegative and
ounded. It can be easily proved that the solutions of the system (1) which start with nonnegative initial data, that is,
ith

S(0) ≥ 0, I(0) ≥ 0, U(0) ≥ 0, R(0) ≥ 0

tay nonnegative for all t ≥ 0. From (1), we see that

dN(t)
dt

=
dS(t)
dt

+
dI(t)
dt

+
dR(t)
dt

= Λ − µN(t),

which implies that

N(t) =

(
N(0) −

Λ

µ

)
e−µt

+
Λ

µ

for all t ≥ 0, which ensures the boundedness of S, I and R. Also,

dU(t)
dt

⏐⏐⏐⏐
U(t)= Γ

e

≤ 0.

ence, U is bounded as well and a positively invariant set of (1) is

Ω =

{
(S, I, U, R) ∈ R4

: 0 ≤ S + I + R ≤
Λ

µ
and 0 ≤ U ≤

Γ

e

}
.

.2. The basic influence number

It is easy to see that the system (1) has a rumor-free equilibrium E0, given by

E0 =

(
Λ

µ
, 0,

Γ

e
, 0
)

.

o discuss the dynamics of the model via an approach which has been proven highly successful in Mathematical
pidemiology and to rearrange the system (1) to fit the framework of the next generation method laid out in [28], let us
irst notice that I and R are ‘‘infected-like’’ compartments, while S and U are ‘‘noninfected-like’’ compartments.
4
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Let us denote X = (I, R)T , Y = (S, U)T and α = ᾱk̄. Then the system (1) can be rearranged as

dX
dt

= F(X, Y ) − V(X, Y ),

dY
dt

= h(X, Y )

in which

F(X, Y ) =

(
θ1αSIf (U)

0

)
, V(X, Y ) =

(
(g(U) + µ)I

−(1 − θ1)αSIf (U) − g(U)I + µR

)
.

We thereby obtain that

F = DF|E0=
(

θ1α
Λ
µ
f (Γ

e ) 0
0 0

)
nd

V = DV|E0=

(
g(Γ

e ) + µ 0

−(1 − θ1)α Λ
µ
f (Γ

e ) − g(Γ
e ) µ

)
.

ence, a threshold parameter for the stability of the system (1), called ad hoc the basic influence number of the system
1), is the spectral radius of matrix FV−1, given by

R0 =
θ1αΛf (Γ

e )

µ(g(Γ
e ) + µ)

. (2)

Remark 3.1. Note that, in the above fraction, the numerator is an non-increasing function of Γ due to (f.ii), while the
denominator is an increasing function of Γ , due to (g.ii). As a result, R0 is a non-increasing function of Γ , which leads to
he conclusion that the higher the allotted budgeting rate for the rumor control mechanisms Γ is, the lower the average
nfluence of a spreader in a totally susceptible population R0 becomes.

.3. The existence of a positive equilibrium

To investigate the possible existence of a positive (or rumor-prevailing) equilibrium E∗,

E∗
= (S∗, I∗, U∗, R∗),

let us first observe that the equilibrium relations take the form

Λ − µS∗
− αS∗I∗f (U∗) = 0,

θ1αS∗I∗f (U∗) − g(U∗)I∗ − µI∗ = 0,

Γ − eU∗
−

δI∗U∗

K + U∗
= 0,

(1 − θ1)αS∗I∗f (U∗) + g(U∗)I∗ − µR∗
= 0.

(3)

By straightforward algebraic manipulations, one sees that

S∗
=

Λ

µ
−

(g(U∗) + µ)
θ1µ

I∗,

I∗ =
(Γ − eU∗)(K + U∗)

δU∗
,

R∗
=

(1 − θ1)αS∗I∗f (U∗) + g(U∗)I∗

µ

. (4)

ubstituting the explicit formulas in terms of U∗ given by (4) into the second equation of (3), one sees that(
R0

f (Γ
e )

g(Γ
e ) + µ

g(U∗) + µ
−

α(Γ − eU∗)(K + U∗)
µδU∗

)
f (U∗) = 1. (5)

Let us define a continuous function τ by

τ : (0, ∞) → R, τ (U) =

(
R0
Γ

g(Γ
e ) + µ

g(U) + µ
−

α(Γ − eU)(K + U)
µδU

)
f (U).
f ( e )

5
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ince limU→0+ τ (U) = −∞ and τ (Γ
e ) = R0, there is a solution U∗ of (5), not necessarily unique, provided that R0 > 1.

This, in turn, leads to the existence of (at least) one rumor-prevailing equilibrium E∗.
The uniqueness of U∗ (or, equivalently, of the positive equilibrium E∗) depends on the concrete forms of f and g and

may or may not hold for arbitrary functions. However, it is easy to note that τ ′(U) > 0 for U ∈ (0, Γ
e ) ensures both the

niqueness of E∗ when R0 > 1 and its nonexistence when R0 ≤ 1.

3.4. The stability of the equilibria

Theorem 3.2. The rumor-free equilibrium E0 =

(
Λ
µ
, 0, Γ

e , 0
)
is locally asymptotically stable provided that R0 < 1.

Proof. The Jacobian matrix of the system (1) at E0 is

J(E0) =

⎡⎢⎢⎢⎢⎣
−µ −α Λ

µ
f (Γ

e ) 0 0

0 θ1α
Λ
µ
f (Γ

e ) − g(Γ
e ) − µ 0 0

0 −
δΓ

Γ +eK −e 0

0 (1 − θ1)α Λ
µ
f (Γ

e ) + g(Γ
e ) 0 −µ

⎤⎥⎥⎥⎥⎦ (6)

We observe that J(E0) has three negative eigenvalues λ1,2 = −µ, λ3 = −e, the remaining eigenvalue λ4 being given by

λ4 = θ1α
Λ

µ
f (

Γ

e
) − g(

Γ

e
) − µ =

(
g(

Γ

e
) + µ

)
(R0 − 1).

ince R0 < 1, one sees that λ4 < 0 and consequently E0 is locally asymptotically stable. Note also that E0 is unstable if
0 > 1. This completes the proof. □

Via similar computations, it is seen that the Jacobian matrix of the system (1) at E∗ has a negative eigenvalue λ1 = −µ,
he other three eigenvalues being the roots of the equation⏐⏐⏐⏐⏐⏐

λ + a11 a12 a13
a21 λ a23
0 a32 λ + a33

⏐⏐⏐⏐⏐⏐ = 0, (7)

where

a11 = αI∗f (U∗) + µ, a12 =
g(U∗) + µ

θ1
, a13 = αS∗I∗f ′(U∗),

a21 = −θ1αI∗f (U∗), a23 = −θ1αS∗I∗f ′(U∗) − I∗g ′(U∗),

a32 =
δU∗

K + U∗
, a33 = e +

δKI∗

(K + U∗)2
.

ote that

a23 = −θ1α
g(U∗) + µ

θ1αf (U∗)
I∗f ′(U∗) − I∗g ′(U∗)

= −
I∗

f (U∗)

[
g(U∗)f ′(U∗) + g ′(U∗)f (U∗) + µf ′(U∗)

]
= −

I∗

f (U∗)
(fg + µf )′

⏐⏐
U(t)=U∗

and consequently a23 ≤ 0, by assumption (fg.i). This implies that

λ3
+ c1λ2

+ c2λ + c3 = 0,

where
c1 =a11 + a33 > 0,
c2 =a11a33 − a12a21 − a23a32 > 0,
c3 =a13a21a32 − a11a23a32 − a12a21a33 > 0.

Applying the Routh–Hurwitz criterion, the remaining eigenvalues are negative or have negative real part if and only if

c1c2 > c3.

However, it is obvious that

c1c2 − c3 = a211a33 + a11a233 − a11a12a21 − a23a32a33 − a13a21a32 > 0.

Hence, one obtains the following result.
6
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heorem 3.3. If R0 > 1, then the rumor-free equilibrium E0 is unstable and there is at least one rumor-prevailing equilibrium
∗

= (S∗, I∗, U∗, R∗), which is necessarily locally asymptotically stable.

emark 3.4. Note that, in some sense, assumption (fg.i) is not necessarily optimal, since it ensures that each of the three
erms (the sign in front of them being included) involved in the expressions of c2 and c3 are positive, condition which is
trictly stronger than their sum being positive. Consequently, E∗ may be locally asymptotically stable even if (fg.i) is not
satisfied.

Remark 3.5. From Theorems 3.2 and 3.3, it is seen that R0 is indeed a threshold parameter as far as the stability of the
model (1) is concerned, separating the extinction of the rumor from its prevailment. Let us denote limx→∞

f (x) = f . If

θ1αΛf > µ(ḡ + µ),

(which happens, for instance, if the newcomers recruitment rate Λ or the percentage of newcomers who become spreaders
1 are too high, or if the maximal attitude adjustment rate ḡ is too low, or the maximal transmission attenuation rate f
is still too high), then

R0 ≥
θ1αΛf

µ(ḡ + µ)
> 1, (8)

which leads to the (perhaps unpleasant) conclusion that the rumor will persist regardless of the budget devoted to rumor
control. However, it can also be seen that, in such a situation, efforts to improve any of the mechanisms (lowering f or
increasing ḡ) can bring back R0 below 1 and ensure the success of rumor control.

Also, at the opposite end of the spectrum, if

θ1αΛ < µ2

(which happens, for instance, when the newcomers are generally not inclined to become spreaders or the recruitment
rate of newcomers is low), then

R0 ≤
θ1αΛ

µ2 < 1, (9)

and the rumor will disappear on its own, no budget for rumor control measures being necessary.

Remark 3.6. Let us think for the moment of R0 as a function of Γ , R0 = R0(Γ ), and suppose that

θ1αΛ

µ(g(0) + µ)
> 1,

θ1αΛf

µ(ḡ + µ)
< 1,

that is,

lim
Γ ↓0

R0(Γ ) > 1, lim
Γ →∞

R0(Γ ) < 1.

Let us also suppose that at least one of the functions f , g is strictly monotonic, which leads to R0(Γ ) being strictly
decreasing. In this situation, there is a unique Γc which solves the equation R0(Γ ) = 1. This Γc can be thought as a
sharp lower bound for the least amount of funding necessary to extinguish the rumor. However, the equation R0(Γ ) = 1
might be transcendental (and it is, in our examples, where f contains an exponential and g is a rational function), and
onsequently Γc can sometimes be only approximated, not determined explicitly. Also, there is the caveat that Γ > Γc
guarantees the elimination of the rumor only in the long term, which may or may not be acceptable in a social setting,
for which time is also a concern.

4. The stochastic model

Since the dynamics of R does not affect the spread of rumors directly, we can discard the growth equation of stiflers
and then examine the effect of external perturbations occurring in the growth equations of newcomers, spreaders and
of the government control mechanisms. We then employ the following stochastic model, derived from its deterministic
counterpart (1), to incorporate the effect of randomly fluctuating environments

dS = (Λ − αSIf (U) − µS) dt + σ1SdW1(t),
dI = (θ1αSIf (U) − g(U)I − µI) dt + σ2IdW2(t),

dU =

(
Γ − eU −

δIU
K + U

)
dt + σ3UdW3(t).

(10)

ere, Wi (i = 1, 2, 3) are mutually independent standard Brownian motions defined over a complete probability space
Ω, F, F , P) with a filtration {F } satisfying the usual conditions (that is, it is right continuous and increasing, while
t t t≥0

7
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F0} contains all P-null sets). In the above, σ 2
i ≥ 0 represent the intensities of Wi, i = 1, 2, 3. If a, b ∈ R, we shall denote

max(a, b) by a ∨ b and min(a, b) by a ∧ b, while a.s. will be used as a shorthand for almost surely. We shall denote the
indicator function of a set S by IS . Also, for easier reference, we shall call ‘‘(1)′’’ the model which is obtained from the
initial deterministic model (1) by discarding the growth equation for stiflers.

Definition 4.1. Consider the n-dimensional stochastic differential equations

du(t) = A(t, u)dt + B(t, u)dW (t), for t ≥ t0. (11)

Let V (t, u) ∈ C1,2 be a nonnegative continuously differentiable function, once with respect to t and twice with respect to
u. Then the differential operator L for the function V (t, u) corresponding to the stochastic differential Eqs. (11) with drift
nd diffusion coefficients A(t, u) and B(t, u), respectively, is given by

LV (t, u) =
∂V (t, u)

∂t
+ AT ∂V (t, u)

∂u
+

1
2
trace

[
BT ∂2V (t, u)

∂2u
B
]

.

4.1. Existence of a unique global solution

Denote

R3
+

=
{
(x1, x2, x3)|xi > 0, i = 1, 2, 3

}
.

We observe that the stochastically perturbed system (10) is mathematically (and socially) well-posed, as it has a unique
global solution which is positivity-preserving.

Theorem 4.2. For any initial value
(
S(0), I(0),U(0)

)
∈ R3

+
, there exists a unique global solution

(
S(t), I(t),U(t)

)
of the

system (10) for t ≥ 0 that will remain in R3
+

with probability 1.

The proof of this Theorem can be found in Appendix. We can now further discuss the behavior of these solutions by
investigating the dynamics of the stochastic model (10) around the equilibria of the corresponding deterministic, reduced
model (1)′.

4.2. Asymptotic behavior around the rumor-free equilibrium of the deterministic model

As mentioned in the previous section, the deterministic system (1) has a rumor-free equilibrium E0 = (Λ
µ
, 0, Γ

e , 0),
hich is locally asymptotically stable provided that R0 < 1. However, for the stochastic system (10), E0 is no longer
he rumor-free equilibrium, due to the stochastic perturbations, which implies that the solutions cannot converge to E0.
n this section, we shall investigate the asymptotic behavior of the stochastic system (10) around E ′

0 = (Λ
µ
, 0, Γ

e ), the
orresponding equilibrium of (1)′.

Theorem 4.3. If

R0 <
2µ2

(ḡ + 2µ)(g(Γ
e ) + µ)

f (
Γ

e
)

and the following conditions hold

σ 2
1 < µ, σ 2

2 < 2µ, σ 2
3 < e,

then for any given initial value
(
S(0), I(0),U(0)

)
∈ R3

+
, the unique global solution

(
S(t), I(t),U(t)

)
of the system (10) satisfies

lim sup
t→+∞

1
t
E
∫ t

0

[(
S(s) −

Λ

µ

)2
+ I2(s) +

(
U(s) −

Γ

e

)2] ds ≤
θ2
1σ 2

1 (
Λ
µ
)2 + c2σ 2

3 (
Γ
e )

2

κ
,

in which

κ = min
{
θ2
1 (µ − σ 2

1 ), µ −
1
2
σ 2
2 , c2(e − σ 2

3 )
}

nd

c2 = −
(ḡ + 2µ)(g(Γ

e ) + µ)

αδf (Γ
e )

Γ
e

(
R0 −

2µ2

(ḡ + 2µ)(g(Γ
e ) + µ)

f (
Γ

e
)

)
.

The proof of this Theorem can be found in Appendix. As seen from Theorem 4.3, if the value of the basic reproduction
umber R0 is not too high and the intensities of the stochastic perturbations σ 2

1 , σ 2
2 , σ 2

3 are low, then the solutions of
he stochastic model (10) will oscillate around the rumor-free equilibrium of the deterministic model (1)′. That is, if
he spreaders are not very convincing and the strength of the stochastic perturbations is limited, then the solutions of
he stochastic model (10) will still be close enough to the rumor-free equilibrium, most of the time. Note that, strictly
peaking, Theorem 4.3 does not require that R < 1.
0

8
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.3. Asymptotic behavior around the rumor-prevailing equilibrium of the deterministic model

In this subsection, we assume that R0 > 1, which implies that the deterministic system (1) has a (not necessarily
nique) rumor-prevailing equilibrium E∗

= (S∗, I∗,U∗, R∗), which is locally asymptotically stable. However, E∗ is not a
umor-prevailing equilibrium for the stochastic system (10) anymore, due to the stochastic perturbations. We shall then
nvestigate the asymptotic behavior of the system (10) around E∗.

heorem 4.4. If R0 > 1 and the following conditions hold

C1) σ 2
1 < µ −

1
θ1

[
g(U∗) + c3

(
Λ + α

(
1 − f (U∗)

))]
;

(C2) σ 2
2 < µ − (1 + θ1)g(U∗) − (θ1S∗

+ I∗)(ḡ − g(U∗)) − c3g(U∗) − c3θ1α
[
1 − f (U∗)

]
− δU∗;

(C3) σ 2
3 < e(1 + U∗) − Γ ,

then for any given initial value
(
S(0), I(0),U(0)

)
∈ R3

+
, the unique global solution

(
S(t), I(t),U(t)

)
of the system (10) satisfies

lim sup
t→+∞

1
t
E
∫ t

0

[(
S(s) − S∗

)2
+
(
I(s) − I∗

)2(s) +
(
U(s) − U∗

)2] ds ≤
Θ

ρ
,

n which

Θ
.
=θ1g(U∗)(S∗

2
+ I∗

2
) + 2g(U∗)I∗

2
+

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)]
(
1
2

+ I∗
2
)

+ (θ2
1σ 2

1 S
∗
2
+ σ 2

2 I
∗
2
) + c3g(U∗)

(
1
2

+ I∗
2
)

+ c3
(
ḡ − g(U∗)

)
I∗

+
1
2
c3I∗σ 2

2 + c3θ1α
(
1 − f (U∗)

)(
S∗

2
+ I∗

2)
+ c3θ1Λ

(
S∗

2
+

1
2S∗2

)
+ σ 2

3 U
∗
2
+

δI∗U∗

K + U∗

(
U∗

2
+

1
2

)
+ δU∗(I∗

2
+

1
2
).

ρ = min
{

−θ2
1µ + θ1g(U∗) + θ1σ

2
1 + c3θ1α

(
1 − f (U∗)

)
+ c3θ1Λ,

− µ + (1 + θ1)g(U∗) + (θ1S∗
+ I∗)(ḡ − g(U∗)) + c3g(U∗) + σ 2

2

+ c3θ1α
[
1 − f (U∗)

]
+ δU∗, Γ − e(1 + U∗) + σ 2

3

}
nd

c3 =
g(U∗) + 2µ

αf (U∗)
.

The proof of this Theorem can be found in Appendix. In a similar vein to what was already observed above, Theorem 4.4
stablishes that if the deterministic model (1)′ has a rumor-prevailing equilibrium and the intensities of the stochastic

perturbations σ 2
1 , σ

2
2 , σ

2
3 are low, then the solutions of the stochastic model (10) will oscillate around the rumor-prevailing

quilibrium of the deterministic model (1)′. That is, if the strength of the stochastic perturbations is limited, then the
solutions of the stochastic model (10) will still be close enough to the rumor-prevailing equilibrium, most of the time.

Remark 4.5. Conditions (C1)–(C3) have a theoretical value only, as they cannot be verified a priori (i.e., they explicitly
epend upon the coordinates of the rumor-prevailing equilibrium, for which explicit expressions are not available).
owever, they take a somewhat simpler form if f ≡ 1 (the mechanisms for the inhibition of rumor spreading are not

active).

5. Numerical simulations

In this section, we shall perform several numerical simulations in order to illustrate and enhance our modeling
considerations as well as the abstract findings presented in the previous sections.

5.1. The simulation of deterministic rumor spreading process

For our numerical simulations, we employ a number of parameter values taken from the available literature and
estimate several others, as shown in Table 1. 780624 780624

We first choose f (U) = 0.5(1+e−U ), g(U) =
U

5(1+U) and µ = 0.25, so that fg+µf is an increasing function, as shown in
Fig. 2. Fig. 3 illustrates the bilinear dependence of the basic influence number R0 upon the rate of flow into the newcomer
class Λ and upon the average contact rate α = k̄ᾱ , the other parameters being fixed (Γ = 1 and e = 0.5).
9
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a

Table 1
Parameters and their values.
Parameter Value Source

Λ 2–6 [19,29]
α 10−5–0.6 [19,29,30]
µ 0.25 [19]
θ1 0.2 [19]
f (U) 0.5(1 + e−U ) estimated
g(U) 0.2 U

1+U estimated
Γ 0.5–1.5 estimated
e 10−5–1 estimated
δ 0.5 estimated
K 1 estimated

Fig. 2. The graph of f (U)g(U) + µf (U).

Fig. 3. The basic influence number. Λ ∈ [2, 6], α ∈ [0.05, 0.3], the values of the other parameters being given in Table 1.

As seen from the expression of R0 given by (2), the parameters Λ, α, Γ and e play a vital role for rumor spreading
nalysis, and so do the explicit forms of f and g . In what follows, we establish the contributions of the variances of Λ, α, Γ
10
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Fig. 4. First-order and total-effect Sobol sensitivities of the basic influence number R0 with respect to input parameters (Λ, α, Γ and e). We use
000 sample points, Λ ∈ [2, 6], α ∈ [10−5, 0.6], Γ ∈ [0.5, 1.5] and e ∈ [10−5, 1], the values of the other parameters being given in Table Table 1.

Fig. 5. Mean values of the basic influence number R0 for random values of (a) Γ ∈ (0.5, 1.5), (b) e ∈ (0, 1), (c) K1 ∈ (0, 1) and (d) K2 ∈ (0.5, 1.5).
ere, f (u) = K1(1+ e−u) and g(u) =

0.2u
K2+u . For each input parameter, 100 sample points are randomly picked. Black circles represent random values

f R0 , while red circles represent mean values of R0 .

nd e to the variance of R0, as shown in Fig. 4. To this purpose, we use the Sobol method (Sobol [31], Dimitriu et al. [32]),
hich is a model-independent approach to performing global sensitivity analysis based on variance decomposition. By
nalyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α provides the main
ontribution to the variance of R0.
Fig. 5 depicts mean values of the basic influence number R0 for random values of parameters. Here, f (u) = K1(1+ e−u)

nd g(u) =
0.2u
K2+u , while Γ ∈ (0.5, 1.5), e ∈ (0, 1), K1 ∈ (0, 1) and K2 ∈ (0.5, 1.5), respectively. Obviously, as shown in

Fig. 5(c), as f (that is, K , for our example of f ) increases, so does the mean value of R . For other randomly selected input
1 0

11
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Fig. 6. The evolution of the newcomer population, of the spreader population and of the inhibitor for a low initial density of spreaders. Here,
(0) = 3, I(0) = 0.5, U(0) = 1, (Λ, α) ∈ {(3, 0.1), (3.5, 0.15), (4, 0.2)}, the values of the other parameters being given in Table 1. The corresponding

values of R0 are 0.37, 0.61 and 0.91, respectively.

parameters, the mean value of R0 oscillates up and down around 1, as shown in Fig. 5(a), (b) and (d), illustrating the
nfluences of Γ , e and K2, respectively.

Fig. 6 illustrates the evolution of the total densities of newcomers, spreaders and of the inhibitor for the following
arameter values: (Λ, α) = (3, 0.1), or (3.5, 0.15), or (4, 0.2), the other parameter values being given in Table 1.
According to Theorem 3.2, a rumor outbreak does not occur when R0 < 1. As observed from Figs. 6 and 7, the

density of spreaders declines to zero, which implies that the rumor dies out. For a low initial density of spreaders,
(Fig. 6), the densities of newcomers and of the inhibitor, respectively, steadily increase until they reach their respective
equilibrium states. However, for a high initial density of spreaders, (Fig. 7), the densities of newcomers and of the inhibitor,
respectively, sharply descend at first and then increase to their respective equilibrium states.

Fig. 8 shows different rumor propagation outcomes for different initial conditions, with S(0) ranging from 2 to 20, I(0)
changing from 0.5 to 5, and I(0) varying from 1 to 10. The system no longer has a rumor-prevailing equilibrium and the
rumor-free equilibrium is stable, which is in agreement with the results of our analysis.

To illustrate the existence, uniqueness and stability of the rumor-prevailing equilibrium, we choose Λ = 5.8 and
α = 0.28, the other parameter values being given in Table 1. We then determine the unique rumor-prevailing equilibrium
as having coordinates (9.123, 2.012, 0.996), and being stable, as shown in Fig. 9. This validates our theoretical result given
in Theorem 3.3.

In Fig. 10, we use the pairs (Γ , α) employed above, that is, (Γ , α) = (5.8, 0.28) and (Γ , α) = (4, 0.2), along with
f (U) = 0.3(1 + e−U ), to illustrate that a different value of f (0) not satisfying the normalizing condition f (0) = 1 in the
assumption (f.i) does not influence the local asymptotic stability of E0 and E∗.

.2. The simulation of stochastic rumor spreading process

To illustrate the asymptotic behavior of the solutions of the stochastic system around the rumor-free equilibrium, we
hoose Λ = 2, α = 0.1, the values of the other parameters being given in Table 1. It is then seen that

R0 = 0.2369 <
2µ2

(ḡ + 2µ)(g(Γ
e ) + µ)

f (
Γ

e
) = 0.2644.

Also, let σ1 = 0.2, σ2 = 0.5, σ3 = 0.6 and note that σ 2
1 = 0.04 < µ = 0.25, σ 2

2 = 0.25 < 2µ = 0.5, σ 2
3 = 0.36 < e = 0.5,

the hypotheses of Theorem 4.3 being satisfied.
Figs. 11 and 12 illustrate the time evolution of the total densities of each group (newcomers, spreaders and inhibitors) in

the stochastic rumor spreading model for different initial conditions. To illustrate the asymptotic behavior of the solutions
of the stochastic system around the rumor-prevailing equilibrium of the deterministic model, we set f (U) ≡ 1, Λ = 2,
α = 10, µ = 0.5, e = 1.2, θ1 = 0.5, δ = 0.5, Γ = 1, K = 1 and g(U) =

0.1U
1+U . For these values, it is seen that R0 = 36.67.

We also choose σ1 = 0.1, σ2 = 0.2 and σ3 = 0.4, for which conditions (C1) − (C3) are satisfied. Fig. 13 illustrates the
asymptotic dynamics of the total densities of three groups (newcomer, spreader and inhibitor) in the stochastic rumor
spreading model for different initial conditions.
12



M. Li, H. Zhang, P. Georgescu et al. Physica A 562 (2021) 125321

S

a

6

m
d
a
r

Fig. 7. The evolution of the newcomer population, of the spreader population and of the inhibitor for a high initial density of spreaders. Here,
(0) = 20, I(0) = 10, U(0) = 1, Λ = 4, α = 0.2, the values of the other parameters being given in Table 1, which leads to R0 = 0.91.

Fig. 8. The evolution of the newcomer population, of the spreader population and of the inhibitor for Λ = 3, α = 0.1, which leads to R0 = 0.37,
nd for several distinct initial conditions. The solutions converge to the rumor-free equilibrium, with coordinates (12, 0, 2).

. Conclusions

By extending the traditional DK rumor model to account for the effects of the attitude adjusting and spread inhibiting
echanisms depending upon governmental input, we propose deterministic and stochastic models, respectively, to
iscuss the control of rumor spreading on social networks. Although our starting deterministic model can be characterized
s being an augmented SIR model, the use of a fourth variable, the inhibitor, which can be thought as being budget-related
ather than having an epidemiological significance, transcends, in some sense, the epidemiological framework. Also, the
13
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a

Fig. 9. The evolution of the newcomer population, of the spreader population and of the inhibitor for Λ = 5.8, α = 0.28, which leads to R0 = 1.93,
nd for several distinct initial conditions. The solutions converge to the (unique) rumor-prevailing equilibrium, with coordinates (9.123, 2.012, 0.996).

Fig. 10. A numerical example illustrating the fact that a different value of f (0) not satisfying the normalizing condition f (0) = 1 in the assumption
(f.i) does not influence the local asymptotic stability of E0 and E∗ . Here, f (U) = 0.3(1+ e−U ), S(0) = 1.5, I(0) = 0.3, U(0) = 0.2 and (Λ, α) = (4, 0.2)
(green, R0 = 0.5687), (Λ, α) = (5.8, 0.28) (red, R0 = 1.1544), the values of the other parameters being given in Table 1.

use of the possibly nonlinear attitude changing function g makes the coupling between the equations of the model slightly
more involved. For those reasons, we have been unable to obtain global stability results.

First of all, we find an explicit expression for our threshold parameter, the basic influence number R0, and then
investigate the stability of rumor-free and rumor-prevailing equilibria, respectively, of the deterministic model, in terms
of R0, being also observed that R0 is a non-increasing function of the budgeting rate Γ , that is, the higher the budgeting
rate is, the lower the average influence of a spreader in a totally susceptible population becomes. Depending upon the
interplay of the parameters of the model, it is observed that, in certain situations, the rumor will persist regardless of the
budget allotted to rumor control, while in others the rumor will disappear by itself even without exterior intervention,
no budget for rumor control measures being necessary. For all the other situations in-between, a sharp lower bound for
the amount of funding Γc , necessary to make the rumor go away, is determined.

Second, to account for the effect of random external fluctuations, we augment our model by considering stochastic
perturbation of white noise type. Here, the stability properties obtained in the deterministic case are replaced by
14
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Fig. 11. Sample paths for the stochastic process (S(t), I(t),U(t)) of the stochastic model (10) that fluctuate about the steady state E0 , for different
nitial conditions. The parameter values are as used for Fig. 8, except for noise intensities σ1 = 0.2, σ2 = 0.5, σ3 = 0.6 and the rate of input flow
f newcomers Γ = 2.

Fig. 12. Plane projections of Fig. 11. The newcomer population S persists, while the spreader population I is driven to extinction.

estimations in terms of expected values. It is proved that if the spreaders are not very convincing (R0 is low enough)
and the strength of the stochastic perturbations is limited, then the solutions of the stochastic model will still be close
enough to the rumor-free equilibrium, most of the time.

It is also proved that if the deterministic model has at least one rumor-prevailing equilibrium (R0 > 1) and, similarly
to the above, the strength of the stochastic perturbations is limited, then the solutions of the stochastic model will still be
close enough to this rumor-prevailing equilibrium, most of the time. However, a shortcoming of the necessary conditions
in this case is that they are expressed in terms of the coordinates of the rumor-prevailing equilibrium, for which explicit
expressions are not available (i.e., they cannot be verified a priori). Still, this is also not unexpected, since there can be
multiple rumor-prevailing equilibria in this case, as condition R0 > 1 does not ensure uniqueness, and it is then natural
for a generic condition to depends somehow on the equilibrium it refers to.
15
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Fig. 13. Increasing α to 10 and slightly decreasing noise intensities σi(i = 1, 2, 3) while keeping all of other parameter values the same as for Fig. 11
eads to the persistence of both the newcomer population S and spreader population I for several distinct initial conditions.

In order to complement our analysis, numerical simulations are performed to illustrate and enhance our mathematical
findings. To establish the contributions of the variances of the parameters to the variance of R0, a Sobol sensitivity analysis
as been performed. By analyzing the first-order and the total-effect sensitivity indices, it is seen that the variance of α,
he ‘‘normalized’’ contact rate between newcomers and spreaders, provides the main contribution to the variance of R0.
urther, the evolution of the newcomer population, of the spreader population and of the inhibitor are depicted for both
ow and high initial densities of spreaders. This study does not consider the influence of the network structure on rumor
preading, which is left as a possible avenue of further research.
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ppendix

roof of Theorem 4.2. Since all functional coefficients of the model (10) satisfy local Lipschitz conditions, this system
as a unique local solution on [0, τ ), where τ is the explosion time. To show that this unique solution is global, we prove
e e
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hat τe = +∞ a.s. In fact, choose m0 > large enough such that S(0), I(0), U(0) all belong to ( 1
m0

,m0). For each integer
≥ m0, we define the stopping time as follows

τm = inf
{
t ∈ [0, τe) : min(S(t), I(t),U(t)) ≤

1
m0

or max(S(t), I(t),U(t)) ≥ m0
}
.

learly, τm is increasing as m → ∞. Let τ0 = limm→∞ τm, where τ0 ≤ τe a.s. To complete the proof, it suffices to show
hat τ0 = +∞ a.s., which would imply that τe = +∞ a.s.

If this statement is false, then there exists a pair of constants T > 0 and ν ∈ (0, 1) such that P{τ0 ≤ T } > ν.
onsequently, there is a positive constantm1 ≥ m0 such that P{τm ≤ T } ≥ ν for any integerm ≥ m1. Denote ϕ : R+ → R+,
(x) = x + 1 − ln x. Define also V : R3

+
→ R+ by

V (S, I,U) = ϕ(S) + ϕ(I) + ϕ(U).

n what follows, we shall shorten V (S(t), I(t),U(t)) as V (t). Applying Ito’s formula, we have

dV
(
t
)

=LVdt + (S(t) − 1)σ1dW1 + (I(t) − 1)σ2dW2

+ (U(t) − 1)σ3dW3,

where

LV =

(
1 −

1
S

)
(Λ − αSIf (U) − µS) +

(
1 −

1
I

)
(θ1αSIf (U) − g(U)I − µI)

+

(
1 −

1
U

)(
Γ − eU −

δIU
K + U

)
+

1
2
(σ 2

1 + σ 2
2 + σ 2

3 ).

Using (g.iii), this implies that

LV ≤Λ + Γ + ḡ + 2µ + e +
1
2
(σ 2

1 + σ 2
2 + σ 2

3 ) +

(
α +

δ

K

)
I

≤Λ + Γ + ḡ + 2µ + e +
1
2
(σ 2

1 + σ 2
2 + σ 2

3 )

+ 2
(

α +
δ

K

)
(I + 1 − ln I)

≤k1 + k2V ,

in which k1 = Λ + Γ + ḡ + 2µ + e +
1
2 (σ

2
1 + σ 2

2 + σ 2
3 ) and k2 = 2(α +

δ
K ). Hence,

dV ≤(k1 + k2V )dt + (S − 1)σ1dW1 + (I − 1)σ2dW2 + (U − 1)σ3dW3.

ntegrating this inequality from 0 to τm ∧ T and then taking expectation, we obtain

EV (τm ∧ T ) ≤ V (0) + k1(τm ∧ T ) + k2

∫ τm∧T

0
EV (t)dt,

which implies by Gronwall’s inequality that

EV (τm ∧ T ) ≤

(
V (0) + k1(τm ∧ T )

)
ek2(τm∧T ).

et Ωm = {τm ≤ T } for all m ≥ m1, and then P(Ωm) > ν. Note that for every ω ∈ Ωm, one of S(τm, ω), I(τm, ω) or U(τm, ω)
quals either m or 1

m . Then

V
(
S(τm, ω), I(τm, ω),U(τm, ω)

)
> min(m + 1 − lnm,

1
m

+ 1 + lnm).

Finally,

+∞ >

(
V (0) + k1τm

)
ek2τm ≥E

(
IΩm (ω)V

(
S(τm, ω), I(τm, ω),U(τm, ω)

))
=P(Ωm)V

(
S(τm, ω), I(τm, ω),U(τm, ω)

)
>ν(min(m + 1 − lnm,

1
m

+ 1 + lnm)) → +∞ (m → ∞),

hich leads to a contradiction. Then τ0 = +∞ a.s., which implies that τe = +∞ a.s. This completes the proof. □

roof of Theorem 4.3. Let define a functional V1 by

V1(S, I,U) =

(
θ1(S −

Λ
µ
) + I

)2
+ c1I +

c2(U −
Γ
e )

2

,

2 2

17
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w
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o

B

U

here c1 and c2 are positive constants that will be determined later. Applying Ito’s formula, we obtain

dV1
(
t
)

=LV1dt +

(
θ1(S −

Λ

µ
) + I

)
(θ1σ1SdW1 + σ2IdW2) + c1σ2IdW2

+ c2σ3U
(
U −

Γ

e

)
dW3,

in which

LV1 =

(
θ1(S −

Λ

µ
) + I

)
[θ1(Λ − αSIf (U) − µS) + θ1αSIf (U) − g(U)I − µI]

+ c1 [θ1αSIf (U) − g(U)I − µI] + c2

(
U −

Γ

e

)(
Γ − eU −

δIU
K + U

)
+

1
2

(
θ2
1σ 2

1 S
2
+ σ 2

2 I
2
+ c2σ 2

3 U
2) .

aving in view that
1
2
a2 ≤ (a − b)2 + b2, ∀a, b ∈ R, (12)

ne obtains that

LV1 ≤

(
θ1(S −

Λ

µ
) + I

)[
θ1µ(

Λ

µ
− S) − (g(U) + µ)I

]
+ c1 [θ1αSIf (U) − (g(U) + µ)I] + c2

(
U −

Γ

e

)(
e(

Γ

e
− U) −

δIU
K + U

)
+ θ2

1σ 2
1

(
(S −

Λ

µ
)2 + (

Λ

µ
)2
)

+
1
2
σ 2
2 I

2
+ c2σ 2

3

(
(U −

Γ

e
)2 + (

Γ

e
)2
)

.

y rearranging the right-hand side, this leads to

LV1 ≤ − µθ2
1 (S −

Λ

µ
)2 − θ1(g(U) + µ)SI + θ1(g(U) + µ)

Λ

µ
I + θ1ΛI − θ1µSI

− (g(U) + µ)I2 + c1 [θ1αSIf (U) − (g(U) + µ)I] − ec2(U −
Γ

e
)2

− c2(U −
Γ

e
)

δIU
K + U

+ θ2
1σ 2

1

(
(S −

Λ

µ
)2 + (

Λ

µ
)2
)

+
1
2
σ 2
2 I

2

+ c2σ 2
3

(
(U −

Γ

e
)2 + (

Γ

e
)2
)

= − (µθ2
1 − θ2

1σ 2
1 )(S −

Λ

µ
)2 − (g(U) + µ −

1
2
σ 2
2 )I

2
− c2(e − σ 2

3 )(U −
Γ

e
)2

+ θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2 + [−θ1(g(U) + µ) − θ1µ + c1θ1αf (U)]SI

+

[
θ1(g(U) + µ)

Λ

µ
+ θ1Λ − c1(g(U) + µ) − c2

δU2

K + U
+ c2

Γ

e
δU

K + U

]
I

sing (f.i), (f.ii), (g.i) and (g.iii), one sees that

LV1 ≤ − θ2
1 (µ − σ 2

1 )(S −
Λ

µ
)2 − (g(U) + µ −

1
2
σ 2
2 )I

2
− c2(e − σ 2

3 )(U −
Γ

e
)2

+ θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2 +

[
−θ1(g(U) + µ) − θ1µ + c1θ1αf (0)

]
SI

+

[
θ1(g(U) + µ)

Λ

µ
+ θ1Λ − c1µ + c2δ(K +

Γ

e
)
]
I

≤ − θ2
1 (µ − σ 2

1 )(S −
Λ

µ
)2 − (g(U) + µ −

1
2
σ 2
2 )I

2
− c2(e − σ 2

3 )(U −
Γ

e
)2

+ θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2 +

[
−2θ1µ + c1θ1α

]
SI

+

[
θ1(ḡ + µ)

Λ
+ θ1Λ − c1µ + c2δ(K +

Γ
)
]
I.
µ e
18
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N
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T

I

t

ow, let us choose c1 =
2µ
α

> 0, so that

−2θ1µ + c1θ1α = 0.

We observe that R0 <
2µ2

(ḡ+2µ)(g( Γ
e )+µ)

f (Γ
e ) implies that

θ1(ḡ + µ)
Λ

µ
+ θ1Λ − c1µ

=
(ḡ + 2µ)(g(Γ

e ) + µ)

αf (Γ
e )

(
R0 −

2µ2

(ḡ + 2µ)(g(Γ
e ) + µ)

f (
Γ

e
)

)
< 0.

We then choose c2 so that

θ1(ḡ + µ)
Λ

µ
+ θ1Λ − c1µ + c2δ

Γ

e
= 0,

which leads to

c2 = −
(ḡ + 2µ)(g(Γ

e ) + µ)

αδf (Γ
e )(K +

Γ
e )

(
R0 −

2µ2

(ḡ + 2µ)(g(Γ
e ) + µ)

f (
Γ

e
)

)
> 0.

Hence,

dV1 ≤ − θ2
1 (µ − σ 2

1 )(S −
Λ

µ
)2 − (g(U) + µ −

1
2
σ 2
2 )I

2
− c2(e − σ 2

3 )(U −
Γ

e
)2

+ θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2 +

(
θ1(S −

Λ

µ
) + I

)
(θ1σ1SdW1 + σ2IdW2)

+ c1σ2IdW2 + c2σ3U(U −
Γ

e
)dW3.

(13)

ntegrating both sides of (13) from 0 to t and then taking expectation we obtain

EV1(t) ≤EV1(0) +

(
θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2
)
t

+ E
∫ t

0

[
−θ2

1 (µ − σ 2
1 )
(
S(s) −

Λ

µ

)2
− (g(U) + µ −

1
2
σ 2
2 )I

2(s)

−c2(e − σ 2
3 )
(
U(s) −

Γ

e

)2] ds.
(14)

herefore,

lim sup
t→+∞

1
t
E
∫ t

0

[
θ2
1 (µ − σ 2

1 )
(
S(s) −

Λ

µ

)2
+ (g(U) + µ −

1
2
σ 2
2 )I

2(s)

+c2(e − σ 2
3 )
(
U(s) −

Γ

e

)2] ds ≤ θ2
1σ 2

1 (
Λ

µ
)2 + c2σ 2

3 (
Γ

e
)2.

f

κ = min
{
θ2
1 (µ − σ 2

1 ), µ −
1
2
σ 2
2 , c2(e − σ 2

3 )
}
,

hen

lim sup
t→+∞

1
t
E
∫ t

0

[(
S(s) −

Λ

µ

)2
+ I2(s) +

(
U(s) −

Γ

e

)2] ds ≤
θ2
1σ 2

1 (
Λ
µ
)2 + c2σ 2

3 (
Γ
e )

2

κ
.

This completes the proof. □

Proof of Theorem 4.4. Let us define a functional V2 by

V2(S, I) =

(
θ1(S − S∗) + I − I∗

)2
2

It follows from Ito’s formula that

dV
(
S(t), I(t)

)
= LV dt +

(
θ (S − S∗) + I − I∗

)
(θ σ SdW + σ IdW ), (15)
2 2 1 1 1 1 2 2

19
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i

S

D

n which

LV2 =
(
θ1(S − S∗) + I − I∗

)(
θ1(Λ − αSIf (U) − µS) + θ1αSIf (U) − g(U)I − µI

)
+

1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2)

=
(
θ1(S − S∗) + I − I∗

)(
θ1(Λ − µS) − (g(U) + µ)I

)
+

1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2)

Since, by the first two equilibrium relations in (3),

θ1Λ = θ1µS∗
+ g(U∗)I∗ + µI∗,

it is seen by (g.ii) and (g.iii) that

LV2 =
(
θ1(S − S∗) + I − I∗

)(
−θ1µ(S − S∗) − (g(U∗) + µ)(I − I∗) +

(
g(U∗) − g(U)

)
I
)

+
1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2)

= − θ2
1µ(S − S∗)2 − (g(U∗) + µ)(I − I∗)2 − [θ1(g(U∗) + µ) + θ1µ](S − S∗)(I − I∗)

+
(
θ1(S − S∗) + I − I∗

)(
g(U∗) − g(U)

)
I +

1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2).

≤ − θ2
1µ(S − S∗)2 − (g(U∗) + µ)(I − I∗)2 − [θ1(g(U∗) + µ) + θ1µ](S − S∗)(I − I∗)

+ θ1SIg(U∗) + g(U∗)I2 +

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)]
I +

1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2).

ince

ab ≤ (a − a1)2 + (b − b1)2 + a21 + b21, ∀a, b, a1, b1 ∈ R, (16)

a ≤
1
2

+ (a − a1)2 + a21, ∀a, a1 ∈ R, (17)

it is seen using also (12) that

LV2 ≤ − θ2
1µ(S − S∗)2 − (g(U∗) + µ)(I − I∗)2 − [θ1(g(U∗) + µ) + θ1µ](S − S∗)(I − I∗)

+ θ1g(U∗)
[
(S − S∗)2 + (I − I∗)2 + S∗

2
+ I∗

2
]

+ 2g(U∗)(I − I∗)2 + 2g(U∗)I∗
2

+

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)](1
2

+ (I − I∗)2 + I∗
2
)

+
1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2).

By rearranging the right-hand side of the above inequality and using (12), it is seen that

LV2 ≤ −
(
θ2
1µ − θ1g(U∗)

)
(S − S∗)2

−

(
µ − θ1g(U∗) − g(U∗) −

(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

))
(I − I∗)2

− [θ1(g(U∗) + µ) + θ1µ](S − S∗)(I − I∗) + θ1g(U∗)(S∗
2
+ I∗

2
) + 2g(U∗)I∗

2

+

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)](1
2

+ I∗
2
)

+
1
2
(θ2

1σ 2
1 S

2
+ σ 2

2 I
2).

≤ −
(
θ2
1µ − θ1g(U∗) − θ2

1σ 2
1

)
(S − S∗)2

−

(
µ − θ1g(U∗) − g(U∗) −

(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)
− σ 2

2

)
(I − I∗)2

− [θ1(g(U∗) + µ) + θ1µ](S − S∗)(I − I∗)

+ θ1g(U∗)(S∗
2
+ I∗

2
) + 2g(U∗)I∗

2
+

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)]
(
1
2

+ I∗
2
)

+ (θ2
1σ 2

1 S
∗
2
+ σ 2

2 I
∗
2
).

(18)

enote also

V3(I) = c3

(
I − I∗ − I∗ ln

I∗
)

,

I

20
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S
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t

here c3 is a positive constant whose value will be made precise later. It follows from the Ito’s formula that

dV3
(
I(t)
)

= LV3dt + c3

(
1 −

I∗

I

)
σ2IdW2, (19)

n which

LV3 =c3(I − I∗)
(
θ1αSf (U) − (g(U) + µ)

)
+

1
2
c3I∗σ 2

2

ince, by the second equilibrium relation in (3), one has

θ1αS∗f (U∗) − g(U∗) = µ,

it follows that

LV3 =c3(I − I∗)
(

θ1αSf (U) − θ1αS∗f (U∗) −
(
g(U) − g(U∗)

))
+

1
2
c3I∗σ 2

2

=c3(I − I∗)
(

θ1α(S − S∗)f (U∗) − θ1αSf (U∗) + θ1αSf (U) −
(
g(U) − g(U∗)

))
+

1
2
c3I∗σ 2

2

=c3θ1αf (U∗)(S − S∗)(I − I∗) +
1
2
c3I∗σ 2

2

+ c3(I − I∗)
(

−θ1αSf (U∗) + θ1αSf (U) −
(
g(U) − g(U∗)

))
.

Using again (g.ii) and (g.iii) along with (17) and (f.i), (f.ii), one has

LV3 ≤c3θ1αf (U∗)(S − S∗)(I − I∗) +
1
2
c3I∗σ 2

2

+ c3θ1αSIf (U) + c3θ1αSI∗f (U∗) − c3θ1αSIf (U∗) + c3g(U∗)I
+ c3

(
ḡ − g(U∗)

)
I∗

≤c3θ1αf (U∗)(S − S∗)(I − I∗) +
1
2
c3I∗σ 2

2 + c3g(U∗)
(
1
2

+ (I − I∗)2 + I∗
2
)

+ c3
(
ḡ − g(U∗)

)
I∗ + c3θ1αSI

(
1 − f (U∗)

)
+ c3θ1αSI∗f (U∗).

ince I∗f (U∗) =
Λ−µS∗

αS∗ , we obtain using also (16) and the inequality

a
b

≤ (a − b)2 + b2 +
1

2b2
, ∀a, b ∈ R, b ̸= 0, (20)

hat

LV3 ≤c3θ1αf (U∗)(S − S∗)(I − I∗) +
1
2
c3I∗σ 2

2

+ c3g(U∗)
(
1
2

+ (I − I∗)2 + I∗
2
)

+ c3
(
ḡ − g(U∗)

)
I∗

+ c3θ1α
(
1 − f (U∗)

) [
(S − S∗)2 + S∗

2
+ (I − I∗)2 + I∗

2
]

+ c3θ1S
Λ − µS∗

S∗

≤c3θ1αf (U∗)(S − S∗)(I − I∗) +
1
2
c3I∗σ 2

2

+ c3g(U∗)
(1
2

+ (I − I∗)2 + I∗
2)

+ c3
(
ḡ − g(U∗)

)
I∗

+ c3θ1α
(
1 − f (U∗)

) [
(S − S∗)2 + S∗

2
+ (I − I∗)2 + I∗

2
]

+ c3θ1Λ
(
(S − S∗)2 + S∗

2
+

1
2S∗2

)
=c3θ1αf (U∗)(S − S∗)(I − I∗) + c3g(U∗)

(
1
2

+ (I − I∗)2 + I∗
2
)

+ c3
(
ḡ − g(U∗)

)
I∗

+

(
c3θ1α

(
1 − f (U∗)

)
+ c3θ1Λ

)
(S − S∗)2 + c3θ1α

(
1 − f (U∗)

)
(I − I∗)2

+
1
c3I∗σ 2

2 + c3θ1α
(
1 − f (U∗)

)(
S∗

2
+ I∗

2)
+ c3θ1Λ

[
S∗

2
+

1
2

]
.

(21)
2 2S∗

21
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F
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H

D
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B

inally, let us denote

V4(U) =
(U − U∗)2

2
.

It follows from Ito’s formula that

dV4
(
U(t)

)
= LV4dt + (U − U∗)σ3UdW3, (22)

n which

LV4 =(U − U∗)
(

Γ − eU −
δIU

K + U

)
+

1
2
σ 2
3 U

2

aving in view the third equilibrium relation in (3) and then using (12), it is seen that

LV4 =(U − U∗)
(

−e(U − U∗) +
δI∗U∗

K + U∗
−

δIU
K + U

)
+

1
2
σ 2
3 U

2

≤ − e(U − U∗)2 + (U − U∗)
(

δI∗U∗

K + U∗
−

δIU
K + U

)
+

1
2
σ 2
3 U

2

≤ − e(U − U∗)2 + σ 2
3

(
(U − U∗)2 + U∗

2)
+

δI∗U∗

K + U∗
U + δU∗I

Using now (17), this leads to

LV4 ≤ − e(U − U∗)2 + σ 2
3

(
(U − U∗)2 + U∗

2)
+

δI∗U∗

K + U∗

(
(U − U∗)2 + U∗

2
+

1
2

)
+ δU∗

(
(I − I∗)2 + I∗

2
+

1
2

)
=
[
−e + σ 2

3 +
δI∗U∗

K + U∗

]
(U − U∗)2 + δU∗(I − I∗)2

+ σ 2
3 U

∗
2
+

δI∗U∗

K + U∗

(
U∗

2
+

1
2

)
+ δU∗

(
I∗

2
+

1
2

)
.

(23)

enote

V5 = V2 + V3 + V4,

hat is

V5 =

(
θ1(S − S∗) + I − I∗

)2
2

+ c3

(
I − I∗ − I∗ ln

I∗

I

)
+

(U − U∗)2

2
. (24)

y (18), (21) and (23), it is seen that

LV5 ≤
[
−θ2

1µ + θ1g(U∗) + θ2
1σ 2

1 + c3θ1α
(
1 − f (U∗)

)
+ c3θ1Λ

]
(S − S∗)2

+

{
−µ + (1 + θ1)g(U∗) + (θ1S∗

+ I∗)(ḡ − g(U∗)) + c3g(U∗) + σ 2
2

+ c3θ1α
[
1 − f (U∗)

]
+ δU∗

}
(I − I∗)2

+

(
−e + σ 2

3 +
δI∗U∗

K + U∗

)
(U − U∗)2{

c3θ1αf (U∗) −
[
θ1(g(U∗) + µ) + θ1µ

]}
(S − S∗)(I − I∗)

+ θ1g(U∗)(S∗
2
+ I∗

2
) + 2g(U∗)I∗

2
+

[(
θ1S∗

+ I∗
)(
ḡ − g(U∗)

)](1
2

+ I∗
2
)

+ (θ2
1σ 2

1 S
∗
2
+ σ 2

2 I
∗
2
) + c3g(U∗)

(
1
2

+ I∗
2
)

+ c3
(
ḡ − g(U∗)

)
I∗

+
1
2
c3I∗σ 2

2 + c3θ1α
(
1 − f (U∗)

)(
S∗

2
+ I∗

2)
+ c3θ1Λ

(
S∗

2
+

1
2S∗2

)
+ σ 2

3 U
∗
2
+

δI∗U∗

∗

(
U∗

2
+

1
)

+ δU∗

(
I∗

2
+

1
)

.

K + U 2 2

22
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L

B

N

T

R

et c3 =
g(U∗)+2µ

αf (U∗) . Then

LV5 ≤
[
−θ2

1µ + θ1g(U∗) + θ2
1σ 2

1 + c3θ1α
(
1 − f (U∗)

)
+ c3θ1Λ

]
(S − S∗)2

+

{
−µ + (1 + θ1)g(U∗) + (θ1S∗

+ I∗)(ḡ − g(U∗)) + c3g(U∗) + σ 2
2

+ c3θ1α
[
1 − f (U∗)

]
+ δU∗

}
(I − I∗)2

+

(
−e + σ 2

3 +
δI∗U∗

K + U∗

)
(U − U∗)2

+ Θ.

y (15), (19) and (22), it follows that

dV5 = LV5dt +
(
θ1(S − S∗) + I − I∗

)
(θ1σ1SdW1 + σ2IdW2)

+ c3

(
1 −

I∗

I

)
σ2IdW2 + (U − U∗)σ3UdW3.

(25)

ow, by integrating (25) from 0 to t and taking expectations, one sees that

lim sup
t→+∞

1
t
E
∫ t

0

[(
S(s) − S∗

)2
+
(
I(s) − I∗

)2
+
(
U(s) − U∗

)2] ds ≤
Θ

ρ
.

his completes the proof. □
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