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GLOBAL STABILITY FOR A VIRUS DYNAMICS MODEL WITH
NONLINEAR INCIDENCE OF INFECTION AND REMOVAL∗

PAUL GEORGESCU† AND YING-HEN HSIEH‡

Abstract. Global dynamics of a compartmental model which describes virus propagation in
vivo is studied using the direct Lyapunov method, where the incidence rate of the infection and the
removal rate of the virus are assumed to be nonlinear. In the case where the functional quotient
between the force of infection and the removal rate of the virus is a nonincreasing function of the virus
concentration, the existence of a threshold parameter, i.e., the basic reproduction number or basic
reproductive ratio, is established and the global stability of the equilibria is discussed. Moreover, in
the absence of the above-mentioned monotonicity property, estimations for the sizes of the domains
of attraction are given. Biological significance of the results and possible extensions of the model are
also discussed.
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1. Introduction. We consider a compartmental model for the propagation of a
virus in vivo, in the form

(S)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′ = n(S) − c(S)f(V ),

E′ = c(S)f(V ) − c1i(E),

I ′ = c2i(E) − c3p(I),

V ′ = c4p(I) − r(V ).

Here, S denotes the concentration of the cells in the susceptible (i.e., uninfected) class,
E denotes the concentration of cells in the exposed (i.e., latent) class, I denotes the
concentration of cells in the infected class, and V denotes the concentration of the
virus itself.

The intrinsic growth rate of the susceptible class, which includes both production
of new cells and natural mortality of cells, is given by n(S) with all the newly produced
cells assumed to be susceptible. The movement of cells from the exposed class into
the infected class and the production of free virus from infected cells are given by
c2i(E) and c4p(I), respectively. By c1i(E) and c3p(I), we denote the removal of the
exposed and infected classes, respectively, which include the mortality of cells in the
above-mentioned classes.

It is assumed that the infection process is characterized by the incidence rate
c(S)f(V ), where c(S) denotes the contact function at concentration S and f(V )
denotes the force of infection by virus at concentration V . We note that our incidence

∗Received by the editors March 23, 2006; accepted for publication (in revised form) August 31,
2006; published electronically December 21, 2006. This research was supported by National Science
Council (NSC-Taiwan) research grant NSC-94-2115-M-005-006, which funded the first author’s visit
to National Chung Hsing University under an NSC research fellowship.

http://www.siam.org/journals/siap/67-2/65487.html
†Department of Mathematics, Technical University of Iaşi, Bd. Copou 11, 700506 Iaşi, Romania
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rate is sufficiently general to encompass many forms of commonly used incidence rate,
including simple mass action. The removal rate of the virus is denoted by r(V ). All
functions c, f, i, p, r, n are allowed to be nonlinear and all constants c1, c2, c3, c4 are
assumed to be positive.

We thereby assume that the major infection pathway is virus-to-cell, since the
cell-to-cell pathway is sometimes less documented and therefore less considered, par-
ticularly in diseases such as AIDS (see Perelson and Nelson [18]).

While this model has been studied in Bonhoeffer et al. [1], Korobeinikov [7],
Nowak and May [14], and Perelson and Nelson [18], among others, for linear c, f, i, p,
r, n, it is perhaps important to account for a number of nonlinear features of the bio-
logical phenomena which are involved, especially for the nonlinearity of the incidence
rate, which is influenced by the availability of susceptible cells and by the force of
infection of viral cells. As the concentration of viral cells becomes higher, the simple
mass action law βSV may not necessarily suffice. Moreover, the rate at which an
infected cell or virus will die as a function of their concentrations is generally not
known, and hence we make a further generalization by assuming that the removal
rate is also nonlinear. For a detailed discussion on the virus dynamics of HIV, readers
are referred to Perelson and Nelson [18].

We note that in (S), for i(x) = x and p(x) = x, the constant 1/c1 represents
the average time spent by a cell in the latent state, while 1/c3 represents the average
lifetime of an infected cell. Also, c1 ≥ c2 and c1 − c2 represents the mortality rate of
the exposed cells, while c4 relates to the production of virus from infected cells.

As noted by Korobeinikov in [7], if there is no exposed class E and consequently
c(S)f(V ) represents the movement of cells from the susceptible class directly into the
infected class, the (reduced three-dimensional) system (S) is equivalent to a SEIR
model with a constant population assumption. It is therefore expected that the dy-
namics of our model will share some features with the dynamics of a SEIR model.
Some perspectives and results from the global stability theory for SEIR models would
also be relevant for our discussion. See Korobeinikov and Maini [8], Li et al. [11],
Li and Muldowney [12], and Li, Muldowney, and van den Driessche [13] for global
stability results for SEIR models. However, in [11, 12, 13] the approach is essentially
geometrical, using a stability criteria which extends the Poincaré–Bendixson theorem
and ruling out periodic orbits, rather than constructing a Lyapunov functional.

A related investigation pertaining to the dynamics of infectious disease models
which incorporated nonlinear incidence rates of a very general form has recently been
performed by Korobeinikov and Maini in [9] by using the Lyapunov method. In [9],
the local stability of the equilibria for SIRS and SEIRS models has been considered
assuming that the incidence rate is given by an arbitrary function f(S, I,N), while
the global stability of the equilibria for SIR and SEIR models has been considered
assuming that the incidence rate is of the form f(I)g(S). However, apart from the
incidence rate, the other functions which appear in the models considered in [9] are
linear and a constant population assumption is used, while for our model full non-
linearity is assured and a constant population assumption would not be an option.
Moreover, the analysis performed in [9] is done in a somewhat different manner, with
a focus on the role of the concavity of the nonlinear incidence rate in the existence
and stability of the endemic equilibrium.

Substantial results regarding the global dynamics of a three-dimensional HIV
model have been obtained by De Leenheer and Smith [3] using a different approach;
their result distinguishes whether or not the term −kV T , which models the loss of a
free virus particle once it enters the target cell, can be absorbed into the general loss
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term −γV . In [3], V is the concentration of free virus particles in the blood and T is
the concentration of T cells. De Leenheer and Smith start with general assumptions
on the function f which models T cell dynamics in a healthy individual and then
specialize their results for two particular functions: f1(T ) = δ−αT +pT (1−T/Tmax)
as used by Perelson and Nelson in [18] and f2(T ) = δ − αT as used by Nowak and
May in [14]. Certain linearity assumptions on some other functions appearing in the
model are also made.

In the particular case in which the term −kV T is absorbed into the general loss
term (as done in [18] and [14])) and f = f2, the model used in [3] can be thought of as
a reduced version of our model, with no exposed class and extra linearity assumptions.
However, the proof of our global stability result uses in an unavoidable manner the
monotonicity assumption on n, which corresponds to f in [3], and therefore it can
accommodate the case f = f2 only and not the case f = f1. In particular, our model
does not admit orbitally asymptotically stable periodic solutions, which are obtained
in [3] for f = f1; see [3, Theorem 1] for details.

The paper is organized in the following manner. We propose the model to be
studied in section 2 and discuss its well-posedness. In section 3 we give results on the
stability of the disease-free equilibrium and persistence of the system, while sections
4 and 5 contain discussions on the existence, uniqueness, and global stability of the
endemic equilibrium. Finally, in section 6, we give some remarks on the biological
interpretation of our results, as well as some further extensions of the model one can
make.

2. The model and its well-posedness. We assume that c, f, i, p, r are real
locally Lipschitz functions defined at least on [0,∞) which satisfy

c(0) = f(0) = i(0) = p(0) = r(0) = 0,

c(t), f(t), i(t), p(t), r(t) > 0 for t > 0

and that n is a real locally Lipschitz function defined at least on [0,∞) with n(0) > 0
such that the equation n(S) = 0 has a single solution S0. We also assume that

(n(S) − n(S0))(S − S0) < 0 for S �= S0,(2.1)

(c(S) − c(S0))(S − S0) > 0 for S �= S0

together with

(D)

∫ 1

0+

1

ϕ(τ)
dτ = +∞ for all ϕ ∈ {c, f, i, p} .

Note that (2.1) is satisfied if, for instance, n is strictly decreasing and c is strictly
increasing. We also suppose that there are kn, ki, kp, kv, k̃n > 0 such that

n(S) ≤ k̃n − knS for S ≥ 0, i(E) ≥ kiE for E ≥ 0, p(I) ≥ kpI for I ≥ 0,(G)

r(V ) ≥ krV for V ≥ 0.

The set of growth conditions (G) will be used to establish, in our general setting,
the global existence of the solution for the Cauchy problem associated with the system
(S). We note that these conditions may be dropped if the global existence property
is known or the a priori boundedness of the solutions may be established by other
methods. We shall indicate in section 6 how to remove conditions (G) at the expense
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of other conditions on the behavior of c, f, i, p near +∞ if f/r is nonincreasing on
(0,∞).

First, it can be easily shown that a solution of the system (S) which starts in
[0,∞)4 remains there on its whole interval of existence. To this purpose, we note
that the vector (R1, R2, R3, R4) points inside Q = [0,∞)4 at all points of ∂Q, where
R1, R2, R3, and R4 are the right-hand sides appearing in (S), and hence Nagumo’s
tangency conditions are satisfied. See [15] for details.

From our assumptions, it is clear that the system (S) has a unique saturated (i.e.,
nonextendable) solution for any initial data (S(0), E(0), I(0), V (0)). Using (G), it is
possible to prove that all saturated solutions are global. To this aim, note that(

S + E +
c1
2c2

I +
c1c3
4c2c4

V

)′
≤ k̃n − knS − c1ki

2
E − c1c3

4c2
kpI −

c1c3
4c2c4

krV,

it follows that there is δ = δ(kn, ki, kp, kr, c1, c2, c3, c4) > 0 small enough such that

(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)′
+ δ

(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)
≤ k̃n,

which implies that

S + E +
c1
2c2

I +
c1c3
4c2c4

V − k̃n
δ

≤
(
S(0) + E(0) +

c1
2c2

I(0) +
c1c3
4c2c4

V (0) − k̃n
δ

)
e−δt for t ≥ 0,

and therefore S,E, I, V are bounded on their maximal interval of existence. It follows
that the functions S(t), E(t), I(t), V (t) are defined on [0,∞), and so the Cauchy
problem with nonnegative initial data is well-posed for the system (S). Moreover, if
we denote

F =

{
(S,E, I, V ) ∈ [0,∞)4;S + E +

c1
2c2

I +
c1c3
4c2c4

V ≤ k̃n
δ

}
,

it follows that F is a feasible region for the system (S). Of course, the feasible
region determined above is neither minimal nor unique, and the parameter δ above is
obviously not uniquely determined. We shall simply choose

(2.2) δ = min
(
kn,

c1
2
ki,

c3
2
kp, kr

)
.

If S is small, then S′ = n(S) − c(S)F (V ) > 0 if V stays in a bounded set, since
n(0) > 0 and limS→0 c(S) = 0, and we may infer that for any S(0) > 0 there is
εS(0) > 0 such that S(t) ≥ εS(0) for all t > 0. This means that all solutions which
start with positive S(0) do not reach any point with S = 0 in future time. If S(0) = 0,
then S′ > 0 in a vicinity of 0 and, again, S(t) raises over a certain minimum value (of
course, the case in which S(0) = 0 does not make much biological sense). Also, it can
be seen that the only w-limit point of (S) on the boundary of F is the disease-free
equilibrium (S0, 0, 0, 0) and the only points on the boundary of [0,∞)4 which can be
attained in finite time are situated on [OS, the positive S-semiaxis containing the
origin.



GLOBAL STABILITY FOR A VIRUS DYNAMICS MODEL 341

3. Stability of disease-free equilibrium. Since the equation n(S) = 0 has a
single solution S0 and f(0) = i(0) = p(0) = r(0) = 0, it is easy to see that the system
(S) admits a unique disease-free equilibrium (S0, 0, 0, 0). We now turn our attention
to the study of its stability.

Consider the Lyapunov functional

U1(S,E, I, V ) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2

I +
c1c3
c2c4

V.

Since (c(S) − c(S0))(S − S0) > 0 for S �= S0, it is seen that U1 increases whenever
any of |S − S0|, E, I, V increases and U1(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0, while
U1(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S0, 0, 0, 0).

We now compute the time derivative of U1 along the solutions of (S). It is seen
that

·
U1 =

(
1 − c(S0)

c(S)

)
(n(S) − c(S)f(V )) + (c(S)f(V ) − c1i(E))

+
c1
c2

(c2i(E) − c3p(I)) +
c1c3
c2c4

(c4p(I) − r(V )),

and since n(S0) = 0, we can deduce that

(3.1)
·
U1(S,E, I, V ) =

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) +

[
c(S0)f(V ) − c1c3

c2c4
r(V )

]
.

Due to (2.1), it is easily seen that

(3.2)

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) < 0 for S �= S0,

and the first term in the right-hand side of (3.1) is negative. It is then seen that the
stability of the disease-free equilibrium is related to the sign of the remaining term in
the right-hand side of (3.1).

Theorem 3.1. Suppose that there is a number VR > 0 such that

(3.3) c(S0)
f(V )

r(V )

c2c4
c1c3

≤ 1 for V ∈ (0, VR),

and let m = U1(S0, 0, 0, VR). Then the disease-free equilibrium (S0, 0, 0, 0) is locally
asymptotically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞) × [0,∞)3;U1(S,E, I, V ) < m

}
.

Proof. From (3.1), (3.2), and (3.3), it is seen that
·
U1(S,E, I, V ) ≤ 0 for 0 ≤ V <

VR, with equality if and only if S = S0 and either V = 0 or the equality in (3.3) holds.
Let us denote M̃ =

{
(S,E, I, V ) ∈ (0,∞) × [0,∞)3, 0 ≤ V < VR

}
and take k < m

arbitrary. Since for all V ≥ VR one has U1(S,E, I, V ) ≥ U1(S0, 0, 0, VR), it is seen

that Mk ⊂ M̃ . Consequently,
·
U1(S,E, I, V ) ≤ 0 on Mk, with equality if and only if

S = S0 and the equality in (3.3) holds.
We now find the invariant subsets P̃ within the set

P =
{
(S,E, I, V ) ∈ Mk;

·
U1(S,E, I, V ) = 0

}
.
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Since S = S0 on P̃ and consequently S′ = −c(S0)f(V ), it is seen that V = 0 and
one similarly deduces that E = I = 0; that is, the only invariant subset of P is the
singleton P̃ = {(S0, 0, 0, 0)}. From LaSalle’s invariance principle (see LaSalle [10])
and the fact that k < m was arbitrary, the conclusion follows.

To complement Theorem 3.1, we further consider the case in which the disease-
free equilibrium is unstable and give some remarks related to the persistence of the
system. The system (S) is said to be uniformly persistent on F if there is a constant

ε0 > 0 such that any solution of (S) which starts in (S(0), E(0), I(0), E(0)) ∈
◦
F

satisfies

lim inf
t→∞

S(t) ≥ ε0, lim inf
t→∞

E(t) ≥ ε0, lim inf
t→∞

I(t) ≥ ε0, lim inf
t→∞

V (t) ≥ ε0.

See also Butler, Freedman, and Waltman [2] or Hofbauer and So [6].
Consider the Lyapunov function

U2(S,E, I, V ) = E +
c1
c2

I +
c1c3
c2c4

V.

Similar to the derivation of (3.1), the time derivative of U2 along the solutions of (S)
is given by

(3.4)
·
U2(S,E, I, V ) = c(S)f(V ) − c1c3

c2c4
r(V ).

Obviously, if (S) is uniformly persistent, then the disease remains endemic and
stability for the disease-free equilibrium is excluded. In this regard, we have already
observed that if (3.3) is satisfied on some interval (0, VR), then the disease-free equi-
librium is locally asymptotically stable. If, on the other hand, the opposite of (3.3) is
satisfied on some interval (0, VR), then the system (S) is uniformly persistent in the
sense mentioned above.

Theorem 3.2. Assume that there is a number VR > 0 such that

(3.5) c(S0)
f(V )

r(V )

c2c4
c1c3

> 1 for V ∈ (0, VR).

Then (S) is uniformly persistent and the disease-free equilibrium (S0, 0, 0, 0) is unsta-
ble, with the positive semiaxis [OS as its stable variety.

Proof. From (3.4), (3.5), and the continuity of the function c at S0, it follows that·
U2 > 0 on a small vicinity of (S0, 0, 0, 0), except for the points with V = 0. It then
follows that any solution which starts in that vicinity remains away from (S0, 0, 0, 0),
except for those starting on the positive semiaxis [OS, which tend to (S0, 0, 0, 0) while
remaining on [OS. It may now be obtained, as in Proposition 3.3 in Li et al. [11], that
the system (S) is uniformly persistent. This amounts to observing that (S0, 0, 0, 0)
is the unique compact invariant set on the boundary of our feasible domain (so it is
isolated) and its stable variety is the positive semiaxis [OS, which is contained in the
boundary of the feasible domain. Then the use of Theorem 4.1 in Hofbauer and So
[6], together with the remark that a flow and its time one map have the same maximal
compact invariant set and the same stable set in a region, concludes the proof.

It now remains to indicate some situations in which (3.3) or (3.5) are satisfied.
Suppose for the moment that f/r is nonincreasing on (0,∞) and define a basic re-
production number R0 of the system (S) by

(3.6) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )

(note that the limit limV→0
f(V )
r(V ) does indeed exist, since f/r is monotone on (0,∞)).
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If R0 ≤ 1, then (3.3) is satisfied on [0,∞), while if R0 > 1, then (3.5) is satisfied
for V in a vicinity of 0. Also, it may be seen that limVR→∞ U1(S0, 0, 0, VR) = +∞.
One then obtains the following result, which establishes that R0 is the threshold
parameter for the stability of the disease-free equilibrium.

Theorem 3.3. Suppose that f/r is nonincreasing on (0,∞).
1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptoti-

cally stable.
2. If R0 > 1, then (S) is uniformly persistent and the disease-free equilibrium

(S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable variety.
In fact, if f/r is nonincreasing on (0,∞), more can be said for the case R0 > 1,

and it will be shown in sections 4 and 5 that, in this situation, the system (S) admits
a positive endemic equilibrium, which is globally asymptotically stable.

We also note that if the functions f and r are of class C1 and the limit limV→0
f ′(V )
r′(V )

exists, then by the L’Hôpital theorem

R0 = c(S0)
c2c4
c1c3

lim
V→0

f ′(V )

r′(V )
,

which is in agreement with the definition of the basic reproduction number given by
van den Driessche and Watmough in [19] for a large class of compartmental models,
including the present model. We do not need, however, to assume C1 regularity for
the functional coefficients throughout our proofs. We also note that, since no C1

regularity is assumed, local stability analysis based on Jacobian matrices would fail.

4. Existence of endemic equilibrium. We now try to establish some sufficient
conditions for the existence of the endemic equilibrium (S∗, E∗, I∗, V ∗). Since it would
be somehow unrealistic to attempt to solve the system (EQ) in its greatest generality,
we impose some additional conditions on our functional coefficients. Let us suppose
the following:

f/r is nonincreasing on (0,∞),
(4.1)

c, f, i, p are strictly increasing on [0,∞) and n is strictly decreasing on [0,∞),
(4.2)

lim
x→∞

i(x) = lim
x→∞

p(x) = +∞.
(4.3)

Necessarily, S∗, E∗, I∗, V ∗ > 0, and the following equilibrium relations are satisfied:

n(S∗) = c(S∗)f(V ∗), c(S∗)f(V ∗) = c1i(E
∗), c2i(E

∗) = c3p(I
∗),(EQ)

c4p(I
∗) = r(V ∗).

To solve the equilibrium system (EQ), note first that from the last three equalities in
(EQ) one obtains

c(S∗)f(V ∗) =
c1c3
c2c4

r(V ∗).

Let us define

F1(S, V ) = n(S) − c(S)f(V ), F2(S, V ) = c(S)f(V ) − c1c3
c2c4

r(V ).
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Since S �→ F1(S, V ) is strictly decreasing and F1(0, V ) · F1(S0, V ) < 0 for all V , the
equation F1(S, V ) = 0 can be uniquely solved with respect to S as a function of V
for all V . That is, there is a function S = ψ1(V ) which satisfies

(4.4)
n(ψ1(V ))

c(ψ1(V ))
= f(V ).

Since n/c is strictly decreasing and f is strictly increasing, it follows that ψ1 is
strictly decreasing. Note also that due to (4.4), limV→∞ ψ1(V ) = 0.

Similarly, S �→ F2(S, V ) is strictly increasing and F2(0, V ) < 0 for all V . However,
in this instance it is not necessarily true that F2(S0, V ) > 0, and hence the same
approach we used to solve the equation F2(S, V ) = 0 would not work. However, for our
purpose we do not actually need the global solvability of the equation F2(S, V ) = 0,
since we are searching for a unique endemic equilibrium and consequently for a single
V ∗. In some situations, local solvability may suffice.

To gain insight, suppose for the moment that the equation F2(S, V ) = 0 may also
be uniquely solved with respect to S as a function of V (locally for V ). That is, there
is a function S = ψ2(V ) which satisfies

c(ψ2(V )) =
c1c3
c2c4

r(V )

f(V )
.

Since c is strictly increasing, it follows that ψ2 is strictly increasing.
Since ψ1 is strictly decreasing, ψ2 is strictly increasing and limV→∞ ψ1(V ) = 0,

the curves defined by S = ψ1(V ) and S = ψ2(V ) have a common point (S∗, V ∗) with
S∗ > 0 and V ∗ > 0 if and only if ψ1(0) > ψ2(0), or equivalently, c(ψ1(0)) > c(ψ2(0)).

Since ψ1(0) = S0 and c(ψ2(0)) = c1c3
c2c4

limV→0
r(V )
f(V ) , the existence condition is c(S0) >

c1c3
c2c4

limV→0
r(V )
f(V ) . Using the basic reproduction number of the system (S) as defined

in (3.6) (note again that f/r is monotone), this condition may be rewritten as R0 > 1.
Up to now, we have shown that if the equation F2(S, V ) = 0 is solvable with

respect to S as a function of V , then the necessary and sufficient condition for the
existence of positive (S∗, V ∗) is that R0 > 1. In this case, we have

F2(S, V ) =
c1c3
c2c4

r(V )

[
c(S)

c2c4
c1c3

f(V )

r(V )
− 1

]
;

and F2(S0, V ) is positive for V in a vicinity of 0. Since we have already noted that
F2(0, V ) < 0 for all V , it follows that the equation F2(S, V ) = 0 is solvable with
respect to S as a function of V (locally for V ) if R0 > 1, which is precisely what we
needed. That is, we have shown that the existence of positive (S∗, V ∗) is equivalent
to the validity of condition R0 > 1.

Also, if i, p are strictly increasing on [0,∞) and limx→∞ i(x) = limx→∞ p(x) =
+∞, then the equations i(E) = 1

c1
n(S∗) and p(I) = c2

c3c1
n(S∗) will have unique

positive solutions E∗, I∗, respectively. In view of the above, we can summarize our
discussion with the following result.

Theorem 4.1. Assume that conditions (4.1), (4.2), and (4.3) are satisfied. Then
there is a unique positive endemic equilibrium (S∗, E∗, I∗, V ∗) of (S) if and only if
R0 > 1, where R0 is the basic reproduction number for the system (S), as defined in
(3.6).

We note that conditions (4.1), (4.2), and (4.3) (combined with R0 > 1) are
sufficient for the existence of the endemic equilibrium but not necessary. Actually, if
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one assumes that the removal rate r(V ) of the virus is influenced by treatment which
is administered if an increase of the virus load over a certain value is observed, while
the force of infection f(V ) is not, it is easy to think of a function f/r which is not
monotone, for instance. In this situation, the disease-free equilibrium may coexist
with multiple positive endemic equilibria. It is perhaps also worth noting that the
stability of the equilibria depends essentially on the behavior of the function f/r and
depends on the contact function c only through the basic reproduction number R0.

5. Stability of endemic equilibrium. In this section we assume that the sys-
tem (S) admits a positive endemic equilibrium (S∗, E∗, I∗, V ∗) and study its stability.
However, we do not assume that (4.1), (4.2), and (4.3) are satisfied and establish our
results under somewhat weaker hypotheses. This is consistent with the remark that
conditions (4.1), (4.2), and (4.3) are sufficient for the existence of the endemic equi-
librium but not necessary. For our purpose, apart from the existence of the endemic
equilibrium, we assume that

(c(S) − c(S∗)) (S − S∗) > 0 for S �= S∗, S ≥ 0,(P)

(f(V ) − f(V ∗)) (V − V ∗) > 0 for V �= V ∗, V ≥ 0,

(i(E) − i(E∗)) (E − E∗) > 0 for E �= E∗, E ≥ 0,

(p(I) − p(I∗)) (I − I∗) > 0 for I �= I∗, I ≥ 0

and

(n(S) − n(S∗)) (S − S∗) ≤ 0 for all S ≥ 0.(N)

Note that conditions (P) and (N) are satisfied if (4.2) holds. However, nonmonotone
functions c, f, i, p, n can also satisfy (P) and (N).

We consider the Lyapunov function

U3(S,E, I, V ) =

∫ S

S∗

c(τ) − c(S∗)

c(τ)
dτ +

∫ E

E∗

i(τ) − i(E∗)

i(τ)
dτ

+
c1
c2

∫ I

I∗

p(τ) − p(I∗)

p(τ)
dτ +

c1c3
c2c4

∫ V

V ∗

f(τ) − f(V ∗)

f(τ)
dτ.

Due to the sign conditions (P), it is seen that U3 increases whenever any of |S − S∗|,
|E − E∗|, |I − I∗|, |V − V ∗| increases and U3(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0,
while U3(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S∗, E∗, I∗, V ∗). We note that
if any of S,E, I, V tends to 0, then U3(S,E, I, V ) tends to ∞ due to the divergence
condition (D). It then follows that all level sets of U3 have no limit points on the
boundary of (0,∞)4.

We now compute the time derivative of U3 along the solutions of (S).
Lemma 5.1. The time derivative of U3 with respect to the solutions of (S) is

·
U3(S,E, I, V )

= (n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
+ c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
.
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If the inequality

c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)
≤ 0(5.1)

holds true for V in some given interval (VL, VR), then
·
U3(S,E, I, V ) ≤ 0 for V ∈

(VL, VR), with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

Proof. It is seen that

·
U3 =

(
1 − c(S∗)

c(S)

)
(n(S) − c(S)f(V )) +

(
1 − i(E∗)

i(E)

)
(c(S)f(V ) − c1i(E))

+
c1
c2

(
1 − p(I∗)

p(I)

)
(c2i(E) − c3p(I)) +

c1c3
c2c4

(
1 − f(V ∗)

f(V )

)
(c4p(I) − r(V ))

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − i(E∗)

i(E)
c(S)f(V ) + c1i(E

∗) − c1
p(I∗)

p(I)
i(E)

+
c1c3
c2

p(I∗) − c1c3
c2c4

r(V ) − c1c3
c2

f(V ∗)

f(V )
p(I) +

c1c3
c2c4

f(V ∗)

f(V )
r(V ).

Using the equilibrium relations (EQ), it follows that

·
U3 = n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − c1i(E

∗)
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+ c1i(E

∗)

− c1i(E
∗)

i(E)

i(E∗)

p(I∗)

p(I)
+ c1i(E

∗) − c1i(E
∗)

r(V )

r(V ∗)
− c1i(E

∗)
f(V ∗)

f(V )

p(I)

p(I∗)

+ c1i(E
∗)
f(V ∗)

f(V )

r(V )

r(V ∗)

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) + c1i(E

∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V ∗)

r(V )

)

− c1i(E
∗)

[
i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 2

]

= n(S)

(
1 − c(S∗)

c(S)

)
+ c1i(E

∗)
f(V )

f(V ∗)
+ c1i(E

∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]

+ c1i(E
∗)
c(S∗)

c(S)
− 2c1i(E

∗).

This implies that

·
U3 = (n(S) − c1i(E

∗))

(
1 − c(S∗)

c(S)

)

+ c1i(E
∗)

(
f(V ∗)

f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)
+

f(V )

f(V ∗)
− 1

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
,
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and since c1i(E
∗) = n(S∗), it follows that

·
U3(S,E, I, V )

= (n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
+ c1i(E

∗)

(
f(V ∗)

f(V )
− 1

)(
r(V )

r(V ∗)
− f(V )

f(V ∗)

)

− c1i(E
∗)

[
c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
− 4

]
.

Using the relation c1i(E
∗) = c(S∗)f(V ∗), one gets the required conclusion. Now,

from the sign condition (N) it is seen that

(n(S) − n(S∗))

(
1 − c(S∗)

c(S)

)
≤ 0 for S ≥ 0,

with equality if and only if S = S∗, and from the AM -GM inequality (which says
that the algebraic mean is not smaller than the geometric mean) it is seen that

c(S∗)

c(S)
+

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
+

i(E)

i(E∗)

p(I∗)

p(I)
+

f(V ∗)

f(V )

p(I)

p(I∗)
≥ 4,

with equality if and only if

c(S∗)

c(S)
=

i(E∗)

i(E)

c(S)

c(S∗)

f(V )

f(V ∗)
=

i(E)

i(E∗)

p(I∗)

p(I)
=

f(V ∗)

f(V )

p(I)

p(I∗)
= 1.(5.2)

It then follows that if the inequality

c(S∗)r(V )

(
f(V ∗)

f(V )
− 1

)(
f(V ∗)

r(V ∗)
− f(V )

r(V )

)
≤ 0

holds true for v ∈ (VL, VR), then
·
U3(S,E, I, V ) ≤ 0. For the equality case, we note

that c(S∗) = c(S) if and only if S = S∗, and substituting this into (5.2) one obtains
that

i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

It is now obvious that the stability of the endemic equilibrium (S∗, E∗, I∗, V ∗) is
related to the validity of the inequality (5.1). Subsequently, we estimate the size of
the domain of attraction associated with (S∗, E∗, I∗, V ∗).

Theorem 5.2. Assume that the sign conditions (P) and (N) are satisfied and
there are VL and VR such that

f(V )

r(V )
≤ f(V ∗)

r(V ∗)
for V ∗ ≤ V < VR,(5.3)

f(V )

r(V )
≥ f(V ∗)

r(V ∗)
for VL < V ≤ V ∗.

Define m = min (U3(S
∗, E∗, I∗, VL), U3(S

∗, E∗, I∗, VR)). Then (S∗, E∗, I∗, V ∗) is lo-
cally asymptotically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞)4;U3(S,E, I, V ) < m

}
.
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Proof. Denote

M̃ =
{
(S,E, I, V ) ∈ (0,∞)4;VL < V < VR

}
.

From (5.3) it follows that (5.1) is satisfied for V ∈ (VL, VR), and using Lemma 5.1

one may infer that
·
U3(S,E, I, V ) ≤ 0 on M̃ , with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

Take an arbitrary k < m. Since U3 increases whenever any of |S − S∗|, |E − E∗|,
|I − I∗|, |V − V ∗| increases, it follows easily that, for all V outside (VL, VR), one has
U3(S,E, I, V ) ≥ m for all S,E, I > 0. Consequently Mk ⊂ M̃ . Moreover, as noted
previously, Mk is a bounded set which has no limit points on the boundary of M̃ .

We now find the invariant subsets Ñ within the set

N =
{
(S,E, I, V ) ∈ Mk;

·
U3(S,E, I, V ) ≤ 0

}
.

Since S = S∗ on Ñ and consequently S′ = n(S∗) − c(S∗)f(V ), it follows that S′ =

c(S∗)(f(V ∗) − f(V )), and so S′ = 0 if and only if V = V ∗. From i(E)
i(E∗) = p(I)

p(I∗) = 1

we then deduce that E = E∗ and I = I∗ by using the sign condition (P).
Therefore, using LaSalle’s invariance principle (see LaSalle [10]) one obtains that

any trajectory which starts in Mk tends to (S∗, E∗, I∗, V ∗) as t → ∞. Then the
endemic equilibrium (S∗, E∗, I∗, V ∗) is locally asymptotically stable and the set Mk

belongs to its domain of attraction. Since k was arbitrary and less than m, one obtains
the required conclusion.

We now continue with a few considerations on the inequalities (5.3). Since

lim
VL→0

U3(S
∗, E∗, I∗, VL) = lim

VR→∞
U3(S

∗, E∗, I∗, VR) = +∞,

one obtains that if the following inequalities are satisfied,

f(V )

r(V )
≤ f(V ∗)

r(V ∗)
for V ∗ ≤ V,(5.4)

f(V )

r(V )
≥ f(V ∗)

r(V ∗)
for 0 < V ≤ V ∗,

then (S∗, E∗, I∗, V ∗) is globally asymptotically stable in (0,∞)4.
Regarding the inequalities (5.4) (or (5.3)), it is easy to see that they are ver-

ified if the function f/r is nonincreasing on (0,∞) (or on (VL, VR)); however, this
monotonicity property is only sufficient and not necessary. If r(V ) = kV , for some
k, then the above monotonicity property is satisfied for three common incidence
rates, namely c1(S)f1(V ) = β1SV , c2(S)f2(V ) = β2S

pV q, where 0 < q ≤ 1, and
c3(S)f3(V ) = β3SV/(1 + a1V ).

We also remark that the inequalities (5.4) alone imply the uniqueness of the
endemic equilibrium (S∗, E∗, I∗, V ∗). To show this, suppose that there is another
endemic equilibrium (S∗

1 , E
∗
1 , I

∗
1 , V

∗
1 ). Apart from (EQ), one then has

n(S∗
1 ) = c(S∗

1 )f(V ∗
1 ), c(S∗

1 )f(V ∗
1 ) = c1i(E

∗
1 ), c2i(E

∗
1 ) = c3p(I

∗
1 ),(EQ′)

c4p(I
∗
1 ) = r(V ∗

1 ).
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It follows that

c(S∗) − c(S∗
1 ) =

c1c3
c2c4

(
r(V ∗)

f(V ∗)
− r(V ∗

1 )

f(V ∗
1 )

)
,(5.5)

n(S∗) − n(S∗
1 ) =

c1c3
c2c4

(r(V ∗) − r(V ∗
1 ))(5.6)

and therefore

(c(S∗) − c(S∗
1 )) (V ∗ − V ∗

1 ) ≥ 0.

If V ∗ > V ∗
1 , then, from (5.5), c(S∗) ≥ c(S∗

1 ), S∗ ≥ S∗
1 , which implies n(S∗) ≤ n(S∗

1 )
and consequently from (5.6), r(V ∗) ≤ r(V ∗

1 ), which is a contradiction. The case V ∗ <
V ∗

1 is dismissed in a similar manner, subsequently V ∗ = V ∗
1 and from (5.5), S = S∗

1 .
Substituting these equalities into (EQ) and (EQ′) we obtain that i(E∗) = i(E∗

1 ) and
p(I∗) = p(I∗1 ), and hence E∗ = E∗

1 and I∗ = I∗1 ; that is, the endemic equilibrium is
uniquely determined. However, we should point out that inequalities (5.4) ensure the
uniqueness of the endemic equilibrium only and not necessarily its existence.

6. Discussions and concluding remarks. The earlier analysis clearly indi-
cates the importance of the quantity

c(S0)
f(V )

r(V )

c2c4
c1c3

in the discussion on local stability of the disease-free equilibrium and persistence for
the system. Moreover, under the monotonicity condition on f(V )/r(V ), we obtain
the basic reproduction number

(6.1) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )
.

We will now give a biological interpretation of this result. From (S), it is obvious that
the terms in the numerator denote the growth in the concentrations of the infected
cells, E and I, and of the virus V . The terms in the denominator, on the other
hand, denote the removal (or decrease in concentration) of these three same classes.
Therefore, the ratio of the two can be considered as a measurement of the combined
“productivity,” perhaps more aptly, the basic reproductive ratio of the infected classes
in the system. The fact that the stability of the disease-free equilibrium and the
persistence of the system depend on whether this quantity is less than one or not
(Theorems 3.1 and 3.2) further confirms our assertion.

The quantity f(V )/r(V ) is also important for our results. It can be interpreted
as the efficiency of the virus, that is, the ratio of its infectivity to its removal, as a
function of the virus concentration. Theorems 3.3, 4.1, and 5.2 require f(V )/r(V )
to be a nonincreasing function of V . Some recent studies (see, e.g., [16, 17]) let
f(V ) = r(V ) = V , an assumption which is supported by some clinical data. We
note that in this case f(V )/r(V ) = 1, and hence our condition of nonincreasing ratio
f(V )/r(V ), which generalizes to the models with nonlinear f(V ) and r(V ), is satisfied.
For HIV, it has been observed that the productivity of the virus, f(V ), increases as
the virus concentration increases. Our analysis is valid if the increase in removal of
the virus r(V ) as virus concentration increases is at least to the same level as the
increase in f(V ). Further studies are needed to verify whether our assertion holds.
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On the other hand, if the function f/r is indeed increasing on (0,∞), then U1

and U3 are not necessarily global Lyapunov functionals and therefore do not create
their own boundedness structure for the solutions of (S). For the global existence
of the solutions, growth conditions (G) (see section 2) need to be imposed. If f/r
is nonincreasing on (0,∞), however, the boundedness structures created by the level
sets of U1 and U3 render the growth conditions unnecessary.

Suppose that f/r is nonincreasing on (0,∞) and R0 > 1. Assume that the
following conditions are satisfied:

(B) lim
y→∞

(
y − ϕ(x)

∫ y

x

1

ϕ(τ)
dτ

)
= +∞ for all x > 0 and ϕ ∈ {c, f, i, p} .

Note that (B) is satisfied for a function ϕ such that limy→∞ ϕ(y) = +∞, since in this
situation

lim
y→∞

∫ y

x
1

ϕ(τ)dτ

y
= lim

y→∞

1

ϕ(y)
= 0 for ϕ ∈ {c, f, i, p} .

However, condition (B) is also satisfied for ϕ(x) = xp/(1+axp), 0 < p ≤ 1 (this is, for
instance, the case when ϕ(V ) = f(V ) = V p/(1+aV p) is a nonlinear force of infection
with saturation), which does not tend to +∞ as x → +∞.

Regarding conditions (D), since the only points on the boundary of [0,∞)4 which
can be reached in finite time are situated on [OS and the only w-limit point of (S) on
the boundary of [0,∞)4 is the disease-free equilibrium (S0, 0, 0, 0), a less restrictive
condition than (D) would suffice to avoid these situations, namely

(D′)

∫ 1

0+

1

ϕ(τ)
dτ = +∞ for some ϕ ∈ {f, i, p} .

Then, by the results in the previous section, there is a unique positive endemic
equilibrium which verifies relations (EQ). Take (S(0), E(0), I(0), V (0)) ∈ (0,∞)4.

Then
·
U3 ≤ 0 for all t, and it follows that (S(t), E(t), I(t), V (t)) stays in a level set of

U3 on its whole interval of existence. Since the level sets of U3 are bounded due to
(B), it follows that the saturated solution which starts in (S(0), E(0), I(0), V (0)) exists
on [0,∞). The growth conditions (G), which were used to obtain global existence,
therefore become unnecessary and the proof proceeds in the same manner. Then, as
in section 3, all solutions which start in [0,∞)4 tend to (S∗, E∗, I∗, V ∗), except for
those which start on [OS and tend to (S0, 0, 0, 0) as t → ∞. The growth conditions
become unnecessary for the proof of the uniform persistence result as well, since the
system (S) admits an endemic equilibrium and it is obviously uniformly persistent.

If R0 ≤ 1, the reasoning is quite similar, with U1 in place of U3, and it is obtained
again that all the saturated solutions are global and the stability result remains valid.
We then summarize our discussion in the following result.

Theorem 6.1. Suppose that f/r is nonincreasing on (0,∞) and conditions (4.2),
(4.3), (B), and (D′) are satisfied.

1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptoti-
cally stable.

2. If R0 > 1, then the system (S) admits a unique positive endemic equilib-
rium which is globally asymptotically stable. The disease-free equilibrium
(S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable variety.
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Obviously, in statement 2 the stable variety of the endemic equilibrium actually
excludes [OS.

As an example to illustrate the usefulness of our results, it is easy to see that a
system which fits into our framework is

(RS)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S′ = b−mS − βS
V p

1 + aV p
,

E′ = βS
V p

1 + a1V p
− c1E,

I ′ = c2E − c3I,

V ′ = c4I − kV γ

for b,m, β, k > 0, a ≥ 0, and 0 < p ≤ γ ≤ 1. In this situation, c(S) = βS,
f(V ) = V p/(1 + aV p), i(E) = E, p(I) = I, r(V ) = V γ , n(S) = b−mS.

It follows that f/r = 1/((1 + a1V
p)V γ−p) is nonincreasing on (0,∞),

lim
E→∞

E = lim
I→∞

I = lim
V→∞

kV γ = +∞,

and limV→∞ V p/(1 + aV p) = +∞ if a = 0, while if a > 0, then

lim
V→∞

(
V − xp

1 + axp

∫ V

x

1 + aτp

τp
dτ

)
= +∞ for all x > 0.

Also,
∫ 1

0+
1
E dE = +∞. Note that if a = 0 and p ∈ (0, 1), then f(V ) = V p is not

Lipschitzian on [0,∞) due to its behavior near 0. However, our solutions which start
with V > 0 do not reach points for which V = 0 in finite time. Hence the uniqueness
property is not impaired. The same remark applies to the function r. We can therefore
apply the results in the previous sections and obtain the following result.

Theorem 6.2.

1. If p < γ, the basic reproduction number R0 of the system (RS) is +∞. The
system (RS) admits a positive endemic equilibrium which is globally asymp-
totically stable. The disease-free equilibrium (S0, 0, 0, 0) is unstable, with the
positive semiaxis [OS as its stable variety.

2. If p = γ, the basic reproduction number R0 of the system (RS) is

R0 =
βb

m

c2c4
c1c3

1

k
.

In this case, if R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally
asymptotically stable, while if R0 > 1, the system (RS) admits a positive
endemic equilibrium which is globally asymptotically stable. The disease-free
equilibrium (S0, 0, 0, 0) is unstable, with the positive semiaxis [OS as its stable
variety.

Again, the “global” stable variety of the endemic equilibrium is understood to
exclude [OS. Note that for p = γ = 1 and a = 0 we obtain the results given in
Korobeinikov [7].
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As a final remark, we note that similar analysis can be extended to a system of
the form

(SE)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S′ = n(S) − c(S)f(V ),

E′ = c(S)f(V ) − c1i(E),

I ′1 = c2i(E) − k1p1(I1),

I ′j = k̃j−1pj−1(Ij−1) − kjpj(Ij), 2 ≤ j ≤ n,

V ′ = k̃npn(In) − r(V ).

The associated Lyapunov functionals are in this case

U1(S,E, I1, . . . , In) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠ Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

U2(S,E, I1, . . . , In) = E +
c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠ Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

and

U3(S,E, I1, . . . , In) =

∫ S

S∗

c(τ) − c(S∗)

c(τ)
dτ +

∫ E

E∗

i(τ) − i(E∗)

i(τ)
dτ

+
c1
c2

n∑
i=1

⎛
⎝i−1∏

j=1

kj

k̃j

⎞
⎠∫ Ii

I∗
i

pi(τ) − pi(I
∗
i )

pi(τ)
dτ

+
c1
c2

⎛
⎝ n∏

j=1

kj

k̃j

⎞
⎠∫ V

V ∗

c(τ) − c(V ∗)

c(τ)
dτ,

with the convention
∏0

j=1
kj

k̃j
= 1.

Again, related asymptotic stability can be obtained as in previous sections, and
the size of the domain of attraction depends essentially on the behavior of the function
f/r. If the function f/r is nonincreasing on (0,∞), the threshold parameter R0 is
given by

R0 = c(S0)
c2
c1

⎛
⎝ n∏

j=1

k̃j
kj

⎞
⎠ lim

V→0

f(V )

r(V )
.

The first Lyapunov functional of type
∑n

i=1 di
(
xi − x∗

i − x∗
i ln xi

x∗
i

)
, to which our

functional U3 reduces when c, f, i, p are linear functions, has been used by Volterra in
[20] to treat a two-dimensional predator-prey model which describes the interaction
between sharks and predated fish in the Mediterranean Sea. (See also Goh [4].) In
[5], Harrison constructed a Lyapunov functional of this type for a two-dimensional
predator-prey model which accounted for very general numerical and functional re-
sponses of the predator. The computation of the derivatives is straightforward and
hence omitted for brevity.
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