Research project PN-II-RU-TE-2014-4-0004, 272/01.10.2015

a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI

Director: Professor Dorel Fetcu

  


  Project Title
  Research Team
  Objectives
  Results
  Talks & Posters
  Reports




1. PROJECT TITLE

CONSTANT MEAN CURVATURE AND BIHARMONIC SUBMANIFOLDS
Contract PN- II-RU-TE-2014-4-0004,

Nr. 272/01.10.2015

 

Abstract: Submanifolds with constant mean curvature (CMC submanifolds) and, more generally, submanifolds with mean curvature vector field parallel in the normal bundle (PMC submanifolds) are two of the most studied objects in modern Differential Geometry. A more recent subject is represented by biharmonic immersions (biharmonic submanifolds), a particular case of biharmonic maps between Riemannian manifolds. The biharmonic maps were suggested by J. Eells and J. H. Sampson as a natural generalization of harmonic maps and, therefore, biharmonic submanifolds generalize the classical minimal submanifolds. The aim of our project is to study CMC, PMC, and biharmonic submanifolds in various geometric contexts. New examples, as well as characterization and classification results, will be obtained. Classical instruments often involved in this kind of studies, like, for example, holomorphic differentials or Simons type equations, will be used and also new methods will be developed in order to understand and describe the geometry of such submanifolds.


2. RESEARCH TEAM

No.

First and last name

Title

Project role

1

Dorel FETCU

Professor

Project Manager

2

Cezar ONICIUC

Professor

Senior Researcher

3

Ana Irina NISTOR

Assistant Professor

Postdoctoral Researcher

4

Radu STRUGARIU

Professor

Postdoctoral Researcher

5

Simona-Elena NISTOR (BARNA)

PhD. Student

Research Assistant

6

Andreea-Elena ACSINTE (FLOREA)

PhD. Student

Research Assistant


3. OBJECTIVES

O1.       Study of submanifolds with parallel mean curvature vector field in Riemannian manifolds.

O2.       Study of biharmonic and biconservative submanifolds in certain 3-dimensional spaces.

O3.       Study of biharmonic and biconservative submanifolds in product spaces Mn(C)x R.

O4.       Study of biharmonic and biconservative surfaces in complex space forms.

O5.       Study of equivariant biharmonic maps.

O6.       Study of magnetic curves in product spaces.

O7.       Edit a monograph on biharmonic submanifolds.

4. EXPECTED RESULTS

  • Phase I (2015): one scientific paper
  • Phase II (2016): three scientific papers
  • Phase III (2017): two scientific papers

5. RESULTS

2015

ISI accepted papers

1.      D. Fetcu, S. Nistor, and C. Oniciuc, On biconservative surfaces in 3-dimensional space forms, Comm. Anal. Geom., to appear.

2016

ISI published papers

1.      S. L. Druta-Romaniuc, J. I. Inoguchi, M. Munteanu, and A. I. Nistor, Magnetic curves in cosymplectic manifolds, Rep. Math. Phys. 78 (2016), 33 – 48.

2.      E. Loubeau and C. Oniciuc, Constant mean curvature proper-biharmonic surfaces of constant Gaussian curvature in spheres, J. Math. Soc. Japan 68 (2016), 997–1024.

3.      S. Nistor, Complete biconservative surfaces in R^3 and S^3, J. Geom. Phys. 110 (2016), 130 – 153.

Accepted papers

1.      S. Montaldo, C. Oniciuc, and A. Ratto, Reduction methods for the bienergy, Rev. Roumaine Math. Pures Appl., to appear.

Preprint

1.      D. Fetcu, E. Loubeau, and C. Oniciuc, Biharmonic tori in spheres, preprint 2016.

6. TALKS & POSTERS

7. REPORTS

 

Scientific report 2015 (RO); Scientific report 2015 (EN)

Scientific report 2016 (RO); Scientific report 2016 (EN)