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Abstract. We hereby consider a two-patch SI integrated pest man-
agement model with dispersal of susceptible pests between patches, which is
subject to periodic impulsive biological and chemical controls. The biological
control consists in the periodic release of infective pests, in a constant amount,
while the chemical control consists in periodic pesticide spraying, which causes
the removal of fixed proportions of the infective and susceptible pest popula-
tions, respectively. The spread of the disease inflicted by the release of infective
pests is characterized by a nonlinear incidence rate of infection expressed in
an abstract, unspecified form. A sufficient condition for the local stability of
the susceptible pest-eradication periodic solution is obtained through the use
of Floquet theory for impulsive and periodic ordinary differential equations,
the effect of population dispersal between patches upon the stability of this
solution being then investigated for several particular cases.

2000 Mathematics Subject Classification: 92D40, 34A37.

1. Introduction

After it has been noted that the traditional approach to pest control, con-
sisting in the repeated use of pesticides, has led in many situations to pest
resistance, which encourages even greater pesticide use, with little useful ef-
fects but causing yet more pest resistance and having unwelcomed secondary
effects such as the persistence of hazardous residual chemicals in the environ-
ment, food contamination and the loss of biodiversity, an integrative approach
called integrated pest management started to prevail. Integrated pest manage-
ment consists in the use of a large array of methods to control pests, with an
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emphasis on minimizing the environmental and health risks and understanding
the ecological relationships within the managed ecosystem. This approach may
involve the use of biological agents (fungi, parasites or predators of the unde-
sirable pest), chemical agents (selective pesticides and pheromones), together
with cultural and physical aspects (pest barriers, crop rotation and tillage)
and provides a conceptual framework for the development of effective and sus-
tainable pest control methods. See Koul and Cuperus [11] for a discussion on
ecologically-based integrated pest management strategies.

The biological control method consists in the use of natural enemies to
regulate pest populations (see Hoffman and Frodsham [9]). Several common
strategies are currently in use, namely the conservation biological control, in
which the biocontrol agents are already present in the environment and are
favored and enhanced via habitat management or other methods, the classical
biological control, in which a small population of biocontrol agents is intro-
duced at once in the environment with the purpose of stabilizing the system
near a long-term equilibrium between pests and biocontrol agents and the
augmentative biological control, in which biocontrol agents are repeatedly in-
troduced in the environment with the purpose of totally eradicating the pest
population. The chemical control method is generally avoided and used only
as a last resort, as pesticides are sometimes the most effective way to contain
a pest outbreak, selective pesticides which target the undesirable pest and
minimize the damage inflicted on non-target organisms being preferred. See
Brudea [4] for an overview of the various mechanisms of action of biocontrol
agents and pesticides towards the incapacitation or removal of pests.

A perspective to augmentative biological control is to periodically release
infective pest individuals, with the purpose of maintaining the endemicity of
a disease in the target pest population, on the grounds that infective pests are
usually less likely to reproduce or to damage the environment. In this case,
the usual considerations on compartmental models for disease propagation
apply, the dynamics of the pest population being then described via a SEIR
model or one of its variations. To account for the immediate variation of
the pest population sizes after the release of infective pest individuals and
to reflect the discountinuous character of human control activities, models
involving impulsive perturbations are often used (see Mailleret and Grognard
[13], Shi and Chen [15], Georgescu and Moroşanu [6]). See also Apreutesei
[1] and Apreutesei and Dimitriu [2] for optimal control problems associated
to a three-dimensional food chain and to a Lotka-Volterra model, respectively,
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the purpose being to maximize the total population size at the end of a given
interval [0, T ].

The more specialized and hard to find the food on which a species lives,
the stronger it is constrained to live in resource-rich patches. Ultimately, the
populations of all species are patchily distributed at one scale or another. Also,
patchiness may be a feature of the physical environment itself (oceanic islands,
mountain tops, forest patches) or may be created by the species itself through
the depletion of local resources (Begon, Harper and Townsend [5]). Alterna-
tively, patchiness may be an outcome of human interference or disturbance,
which forces certain species to live in habitat remnants (Hastings and Wolin
[8]). In this regard, destruction and fragmentation of habitats are viewed as
some of the most serious threats to biodiversity worldwide (Wilcox and Mur-
phy [18]).

A metapopulation is then a system of local populations which live in spa-
tially separated habitat patches which are surrounded by unhospitable en-
vironment and are connected through dispersal fluxes. Individuals of local
populations are often moving between patches on a daily or seasonal basis to
maintain themselves within the same type of environment (the movement of
crabs on a shoreline with the tide) or to escape major changes in food supply or
climate (the seasonal migration of grazing animals). Also, density-dependent
migration is a frequent way of avoiding overcrowding, inbreeding and kin com-
petition.

Mathematical models of populations dispersing between patches are a sub-
ject of growing interest (see, for instance, Kuang and Takeuchi [12], Takeuchi
[16], Hsieh, van den Driessche and Wang [10], Takeuchi, Wang and Saito [17]).
It has been shown in Takeuchi [16] that dispersion between patches does not
destabilize population dynamics, in the sense that in a patchy system occu-
pied by a single species, if the species is able to survive at a globally stable
equilibrium point when the patches are isolated, it will still do so at a different
equilibrium (depending on the dispersal rate) for any dispersion rate. It has
also been shown in Takeuchi, Wang and Saito [17] that if the species goes ex-
tinct in the absence of delays, it will do so for any delay lengths, while suitable
time delays may drive the populations from coexistence to extinction.

The purpose of this paper is to construct a two-patch SI integrated pest
management model which relies on the impulsive use of a biological control, in
the form of periodic release of infective pest individuals, in a constant amount,
and of a chemical control, in the form of periodic pesticide spraying. The
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controls are used with the same periodicity, but not simultaneously. A non-
linear force of infection g in an abstract, unspecified form, is used to model
the spread of the disease inflicted by the release of infective individuals. Of
concern is the stability of the susceptible-pest eradication periodic solution,
our results extending the corresponding ones in Georgescu and Moroşanu [6],
which are obtained for a single-patch version of our model.

The remaining part of this paper is organized as follows: in Section 2, the
single-patch model treated in [6] is described together with the result obtained
therein, the main biological assumptions on which our model relies being also
formulated. In Section 3, several boundedness and stability results for im-
pulsively perturbed systems of ordinary differential equations are introduced,
together with a discussion on the exponential representation formula for the
solution of a time-dependent system of ordinary differential equations. In Sec-
tion 4, our patched model is formulated on the basis of the biological assump-
tions introduced in Section 2 and its well-posedness is established. Section 5
is concerned with a discussion of the stability of the susceptible-pest eradica-
tion periodic solutions, several comments on the biological significance of our
results being also formulated.

2. A SI pest management model

The following impulsively controlled system has been employed in Georgescu
and Moroşanu [6] to characterize the dynamics of a SI integrated pest man-
agement model which is subject to periodic impulsive biological and chemical
controls

S ′(t) = S(t)b(S(t))− g(I(t))S(t), t 6= (n+ l − 1)T, t 6= nT ;
I ′(t) = g(I(t))S(t)− wI(t), t 6= (n+ l − 1)T, t 6= nT ;
∆S(t) = −δ1S(t), t = (n+ l − 1)T ;
∆I(t) = −δII(t), t = (n+ l − 1)T ;
∆S(t) = 0, t = nT ;
∆I(t) = µ, t = nT.

(1)

In the above model, S and I denote the sizes of the susceptible and infec-
tive pest population, respectively, and it is supposed that all pests are either
susceptible or infective. Also, T > 0 is the common periodicity of the bio-
logical and chemical controls, ∆ϕ(t) = ϕ(t+) − ϕ(t) for ϕ ∈ {S, I} represent
the instantaneous jumps of the pest population sizes after the use of controls,
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l ∈ (0, 1) is used to describe the time lag between the successive use of bio-
logical and chemical controls, 0 < δ1, δI < 1, n ∈ N∗. The functions b and g
satisfy the hypotheses indicated below.

(B) b(0) = r, b is decreasing on [0,∞), limS→∞ b(S) < −w, S 7→ Sb(S) is
locally Lipschitz on (0,∞).

(G) g(0) = 0, g is increasing and globally Lipschitz on [0,∞).

To derive the above model, the following biological assumptions have been
made

(A1) The intrinsic growth rate of the susceptible pest population in the ab-
sence of infection is given by the nonlinear function S 7→ Sb(S), where b
satisfies (B).

(A2) The infective pests may neither recover nor reproduce.

(A3) The infective pests neither damage crops nor contribute to the total size
of the environment-supported population.

(A4) The incidence rate of the infection is nonlinear in I and given by g(I)S,
where the nonlinear force of infection g satisfies (G).

(A5) Infected pests are released in an impulsive and periodic fashion with
periodicity T , in a fixed amount µ each time.

(A6) Pesticides are sprayed in an impulsive and periodic fashion, with the
same periodicity T as the action of releasing infective pests but not si-
multaneously. As a result, fixed proportions δ1 and δI of susceptible pests
and infective pests, respectively, are removed each time.

Let us consider the following subsystem of (1)

I ′(t) = −wI(t), t 6= nT, (n+ l − 1)T ;
∆I(t) = −δII(t), t = (n+ l − 1)T ;
∆I(t) = µ, t = nT ;
I(0+) = I0,

(2)

301



P. Georgescu, H. Zhang - The impulsive control of a two-patch . . .

which describes the dynamics of the susceptible pest eradication state. It
has been seen in [4,Lemma 3.5] that the system consisting in the first three
equations of (2) has a periodic solution I∗w given by

I∗w(t) =


µe−w(t−(n−1)T )

1− e−wT (1− δI)
, t ∈ ((n− 1)T, (n+ l − 1)T ];

µe−w(t−(n−1)T )(1− δI)
1− e−wT (1− δI)

, t ∈ ((n+ l − 1)T, nT ],

(3)

to which all solutions of (2) tend as t → ∞. The following result, which
establishes the existence of threshold parameter for the stability of (1) has
also been proven in [6].

Theorem 1 ([6])The following statements hold.
1. The susceptible pest-eradication periodic solution (0, I∗w) of (1) is globally

asymptotically stable provided that∫ T

0
g(I∗w(s))ds− ln(1− δ1) > rT. (4)

2. The susceptible pest-eradication periodic solution (0, I∗w) of (1) is unsta-
ble provided that ∫ T

0
g(I∗w(s))ds− ln(1− δ1) < rT. (5)

In this case, (1) is also permanent.

It may also be seen that if the equality∫ T

0
g(I∗w(s))ds− ln(1− δ1) = rT (6)

holds, then the susceptible pest-eradication periodic solution (0, I∗w) is stable,
but not necessarily asymptotically stable. To complement the above result,
it has also been shown in Georgescu, Zhang and Chen [7] that a supercritical
bifurcation occurs in the limiting case, that is, the following result holds.

Theorem 2 ([7]) A supercritical bifurcation occurs if (6) holds, in the sense
that there is ε > 0 such that for all 0 < ε̃ < ε there is a stable positive nontrivial
periodic solution of (12) with period T + ε̃.
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The biological meaning of the conditions mentioned above is as follows.
Suppose that (S, I) approaches the susceptible pest-eradication periodic solu-
tion (0, I∗w). Then, since the incidence rate of the infection is given by g(I)S,
the integral

∫ T
0 g(I∗(t))dt approximates the normalized (per susceptible pest)

loss of susceptible pests in a period due to their movement to the infective class,
while since the production of newborn susceptible pests is given by Sb(S) and
b(0) = r, rT approximates the normalized gain of susceptible pests in a period.
A correction term − ln(1−δ1) accounts for the loss of the susceptible pests due
to pesticide spraying. In these settings, conditions (4), (5), (6) represent the
fact that the total normalized loss of susceptible pests for a period due to dis-
ease transmission or pesticide spraying is larger than, less than or respectively
equal to the total normalized gain of newborn susceptible pests for a period.
Consequently, the above conditions can be understood as balance conditions
near the susceptible pest-eradication periodic solution.

It is also seen that the classical concept of a basic reproduction number,
which is related to the behavior of the system near the infective-free state and
gives information about whether or not a single infective pest can cause a dis-
ease outbreak when introduced in an infective-free population at equilibrium,
does not carry out well to impulsively perturbed systems with pulsed supply of
infectives. This happens since for such systems of concern is whether or not the
susceptibles (and not infectives) may persist, the survival of infectives being
assured by the pulsed periodic supply. Consequently, although the stability of

(12) is characterized by the threshold parameter RT =

∫ T
0
g(I∗w(s))ds−ln(1−δ1)

rT
, as

seen from Theorems 1 and 2, this is not a basic reproduction number in the
classical sense, although it can be regarded as a reproduction number for the
susceptible pest population.

3.Preliminaries

The local stability results mentioned in Theorem 1 are obtained in [6]
through the use of Floquet theory for impulsive and periodic ordinary dif-
ferential equations. To state the theoretical result employed in [6] in order
to obtain Theorem 1, which shall be of interest for this paper as well, let us
consider the system

x′(t) = A(t)x, t 6= τk, t ∈ R;
∆x = Bkx, t = τk, τk < τk+1, k ∈ Z,

(7)

under the following hypotheses.
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(H1) A(·) ∈ PC(R,Mn(R)) and there is T > 0 such that A(t+ T ) = A(t) for
all t ≥ 0.

(H2) Bk ∈Mn(R), det(In +Bk) 6= 0 for k ∈ Z.

(H3) There is q ∈ N∗ such that Bk+q = Bk, τk+q = τk + T for k ∈ Z.

In the above, by PC(R+,R) (PC1(R+,R)) is meant the class of real piece-
wise continuous (real piecewise continuously differentiable) functions defined
on [0,∞). Let Φ(t) be a fundamental matrix of (7). Then there is a unique
nonsingular matrix M ∈ Mn(R) such that Φ(t + T ) = Φ(t)M for all t ∈ R,
which is called the monodromy matrix of (7) corresponding to Φ. Actually, all
monodromy matrices of (7) are similar and consequently they have the same
eigenvalues λ1, λ2, . . . , λn regardless of the fundamental matrix Φ. These eigen-
values are then called the Floquet multipliers of (7). Under these hypotheses,
the following result holds.

Lemma 1 ([3]) Suppose that conditions (H1)-(H3) hold. Then

1. The system (7) is stable if and only if all Floquet multipliers λk, 1 ≤ k ≤
n, satisfy |λk| ≤ 1 and if |λk| = 1, then to λk there corresponds a simple
elementary divisor.

2. The system (7) is asymptotically stable if and only if all Floquet multi-
pliers λk, 1 ≤ k ≤ n, satisfy |λk| < 1.

3. The system (7) is unstable if there is a Floquet multiplier λk such that
|λk| > 1.

Here, by elementary divisors of a square matrix we understand the characteris-
tic polynomials of its Jordan blocks. We are now concerned with an exponential
representation formula for the solutions of a general time-dependent system.
Let us consider the system

x′(t) = B(t)x, t ≥ 0, (8)

under the hypothesis

(H4) B(·) ∈ C([0,∞),Mn(R)).
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Then the fundamental matrix of (8) satisfying Φ(0) = In can be expressed as
a Peano-Baker series in the form

Φ(t) = In +
∫ t

0
B(s1)ds1 +

∫ t

0
B(s1)

∫ s1

0
B(s2)ds2ds1 (9)

+
∫ t

0
B(s1)

∫ s1

0
B(s2)

∫ s2

0
B(s3)ds3ds2ds1 + · · · .

If B commutes with its integral, that is,

B(t)
(∫ t

0
B(s)ds

)
=
(∫ t

0
B(s)ds

)
B(t) for t ≥ 0, (10)

condition which is satisfied if the following hypothesis hold

(H5) B(t)B(s) = B(s)B(t) for t, s ≥ 0,

then the matrix fundamental matrix Φ can be expressed as

Φ(t) = exp
(∫ t

0
B(s)ds

)
,

where, given M ∈Mn(R), exp(M) is defined as

exp(M) =
∞∑
k=0

1

k!
Mk.

Note that, in general, the fundamental matrix Φ given by (9) may be different
from exp(

∫ t
0 B(s)ds) if B does not satisfy (10).

We now indicate a result which provides an estimation for the solution of
an impulsively perturbed system of differential inequalities.

Lemma 2 ([3]) Let the function u ∈ PC1(R+,R) satisfy the inequalities

du

dt
≤ (≥) p(t)u(t) + f(t), t 6= τk, t > 0;

u(τk+) ≤ (≥) dku(τk) + hk, k ≥ 0;
u(0+) ≤ (≥) u0,

(11)

where p, f ∈ PC(R+,R) and dk ≥ 0, hk and u0 are constants and (τk)k≥0 is a
strictly increasing sequence of positive real numbers. Then, for t > 0,

u(t) ≤ (≥) u0

 ∏
0<τk<t

dk

 e∫ t0 p(s)ds +
∫ t

0

 ∏
0≤τk<t

dk

 e∫ ts p(τ)dτf(s)ds

+
∑

0<τk<t

 ∏
τk<τj<t

dj

 e∫ tτk p(τ)dτhk.
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For other similar quantitative results on impulsive differential equations, see
Bainov and Simeonov [3].

4. A two-patch SI pest management model with dispersal

We now suppose that the environment consists in two distinct patches and
that the susceptible pests can travel freely between patches, but the infected
pests are confined to the patch they live in. Further, it is supposed that
assumptions (A1)-(A6) are valid in each patch, which gives rise to two subsys-
tems of type (12), connected through the equations for the susceptible classes,
in the form

S ′1(t) = S1(t)b1(S1(t))− g(I1(t))S1(t)
+d21S2(t)− d12S1(t), t 6= (n+ l − 1)T, t 6= nT ;

S ′2(t) = S2(t)b2(S2(t))− g(I2(t))S2(t)
+d12S1(t)− d21S2(t), t 6= (n+ l − 1)T, t 6= nT ;

I ′1(t) = g(I1(t))S1(t)− wI1(t), t 6= (n+ l − 1)T, t 6= nT ;
I ′2(t) = g(I2(t))S2(t)− wI2(t), t 6= (n+ l − 1)T, t 6= nT ;

∆S1(t) = −δ1S1(t), t = (n+ l − 1)T ;
∆S2(t) = −δ2S2(t), t = (n+ l − 1)T ;
∆Ii(t) = −δIIi(t), t = (n+ l − 1)T, i = 1, 2;
∆Si(t) = 0, t = nT, i = 1, 2;
∆Ii(t) = µ, t = nT, i = 1, 2.

(12)
For the model above, Si(t), Ii(t), i = 1, 2 denote the sizes of the susceptible and
infective pest classes in patch i, respectively. The nonnegative constants d12

and d21 represent the dispersal rates of the susceptible pest population from
patch 1 to patch 2 and from patch 2 to patch 1, respectively. In this regard, it
is easy to see that if the dispersion coefficients d12 and d21 are null, then the
equations for patches 1 and 2 decouple and we are led to consider two isolated
subsystems of type (1). Also, a common situation is d12 = d21 = D, in which
the migration from one patch to another is proportional to the difference in
population sizes. The functions b1, b2, g, as well as the constants δ1, δ2, δI , µ
are assumed to satisfy the conditions mentioned in Section 2. We shall denote
b1(0) = r1, b2(0) = r2. Note also that the terms δiSi and δIIi may also describe
the effects of selective catching, apart from characterizing the sensitivity of the
pest species to the chemical control.

The impulsive control of a formally related Lotka-Volterra model has re-
cently been considered by Yang and Tang in [19]. We shall use a similar
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approach here, based on the use of Floquet theory for systems of periodic
equations, although it should be noted that a computation of the exponential
of a time-dependent matrix is done in [19] without verifying the commutation
condition (10), which does not seem to hold in that particular setting.

In the remaining part of this section we shall establish the well-posedness
of (12) in a mathematical and biological sense. First, it is easy to see that (12)
has a unique solution for all sets of initial data. Using Lemma 2, it is possible
to prove that all solutions of (12) which start with strictly positive initial data
remain strictly positive on their entire interval of existence.

Lemma 3 The set R4
+ is an invariant region for the system (12).

Proof. Let us consider X = (S1, S2, I1, I2) : [0, T0) → R4 a solution for
(12) defined on its maximal interval of existence which starts with strictly
positive S1(0), S2(0), I1(0), I2(0). It follows that

S ′1(t) ≥ S1(t) [b1(S1(t))− g(I1(t))− d12] , t 6= (n+ l − 1)T, t 6= nT ;
S ′2(t) ≥ S2(t) [b2(S2(t))− g(I2(t))− d21] , t 6= (n+ l − 1)T, t 6= nT ;
I ′1(t) ≥ −wI1(t), t 6= (n+ l − 1)T, t 6= nT ;
I ′2(t) ≥ −wI2(t), t 6= (n+ l − 1)T, t 6= nT,

(13)
as long as X remains positive component-wise. By integrating the above in-
equalities, using Lemma 2 and accounting for the effect of impulsive perturba-
tions which occur for t = nT and t = (n+ l − 1)T , it follows that

S ′1(t+) ≥ S1(0)e
∫ t
0
p1(s)ds(1− δ1)[ t

T
];

S ′2(t+) ≥ S2(0)e
∫ t
0
p2(s)ds(1− δ2)[ t

T
];

I ′1(t+) ≥ I1(0)e−wt(1− δI)[ t
T

];

I ′2(t+) ≥ I2(0)e−wt(1− δI)[ t
T

],

(14)

where

p1(t) = b1(S1(t))− g(I1(t))− d12;

p2(t) = b2(S1(t))− g(I2(t))− d21,

on the interval on which X stays positive component-wise, so X is actually
strictly positive on [0, T0).
Using the above positivity Lemma, it is now possible to prove that all solutions
of (12) are bounded.
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Lemma 4 There is M > 0 such that Si(t) ≤M , Ii(t) ≤M for t ≥ 0, i = 1, 2.

Proof. Let us define u : R+ → R+ by

u(t) = S1(t) + S2(t) + I1(t) + I2(t), t > 0.

Then

du

dt
+wu = S1 (b1(S1) + w) +S2 (b2(S2) + w) , t > 0, t 6= (n+ l−1)T, t 6= nT.

(15)
Since limS→∞ bi(S) < −w, i = 1, 2, it follows that the right-hand side of (15)
is bounded from above and consequently there is C > 0 such that

D+u+ wu ≤ C, t > 0, t 6= (n+ l − 1)T, t 6= nT.

One also sees that

u((n+ l − 1)T+) ≤ (1− δ)u((n+ l − 1)T )

and
u(nT+) = u(nT ) + 2µ,

where δ = min(δ1, δ2, δI). It the follows from Lemma 2 that

u(t) ≤ u(0+)

 ∏
0<(n+l−1)T<t

(1− δ)

 e−wt (16)

+C
∫ t

0

 ∏
s≤(n+l−1)T<t

(1− δ)

 e−w(t−s)ds

+
∑

0<nT<t

2µe−w(t−nT ), t > 0,

so

u(t) ≤ u(0+)e−wt +
C(1− e−wt)

w
+ 2µ

ewT

ewT − 1
, t > 0. (17)

Since the limit of the right-hand side of (17) as t→∞ is C/w+2µewT/(ewT−1),
it easily follows that u is bounded on [0,∞).

5. The stability of the susceptible pest-eradication periodic
solution
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As previously mentioned, when the dispersion coefficients d12 and d21 are
null, one is led to consider two independent subsystems of type (1). Conse-
quently, it is seen that the system consisting in the first four equations of (12)
has a periodic solution E∗ = (0, 0, I∗w, I

∗
w), which gives the behavior of the

system in the absence of susceptible pests. This solution shall be called in the
following the susceptible pest-eradication periodic solution. We now attempt
to discuss its stability by using the method of small amplitude perturbations.
To this purpose, let us denote

S1(t) = u1(t);
S2(t) = u2(t);
I1(t) = v1(t) + I∗w(t);
I2(t) = v2(t) + I∗w(t),

(18)

in which ui, vi, i = 1, 2, are understood to be small amplitude perturbations.
Substituting (18) into the first four equations of (12), one obtains

u′1(t) = u1(t)b1(u1(t))− g1(v1(t) + I∗w(t))u1(t) + d21u2(t)− d12u1(t);
u′2(t) = u2(t)b2(u2(t))− g2(v2(t) + I∗w(t))u2(t) + d12u1(t)− d21u2(t);
v′1(t) = g(v1(t)) + I∗w(t))u1(t)− wv1(t);
v′2(t) = g(v2(t)) + I∗w(t))u2(t)− wv2(t).

(19)

The corresponding linearization of (19) around (0, 0, 0, 0) is

u′1(t) = r1u1(t)− g(I∗w(t))u1(t) + d21u2(t)− d12u1(t);
u′2(t) = r2u2(t)− g(I∗w(t))u2(t) + d12u1(t)− d21u2(t);
v′1(t) = g(I∗w(t))u1(t)− wv1(t);
v′2(t) = g(I∗w(t))u2(t)− wv2(t),

(20)

while the linearization of the jump conditions at (n+ l − 1)T is

∆u1 = −δ1u1(t), t = (n+ l − 1)T ;
∆u2 = −δ2u2(t);
∆v1 = −δIv1(t);
∆v2 = −δIv2(t),

(21)

and the linearization of the jump conditions at nT is

∆u1 = ∆u2 = ∆v1 = ∆v2 = 0, t = nT. (22)
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Let us denote
(r1 − d12)− g(I∗w(t)) d21 0 0

d12 (r2 − d21)− g(I∗w(t)) 0 0
g(I∗w(t)) 0 −w 0

0 g(I∗w(t)) 0 −w


=

(
A(t) O2

g(I∗w(t))I2 −wI2.

)

We note that

A(t)A(s) =

(
a1(t)a1(s) + d21d12 d21(a1(t) + a2(s))
d12(a1(s) + a2(t)) a2(t)a2(s) + d12d21

)
,

where

a1(t) = (r1 − d12)− g(I∗w(t)), a2(t) = (r2 − d21)− g(I∗w(t)).

Then

a1(t) + a2(s) = (r1 − d12) + (r2 − d21) + g(I∗w(s))− g(I∗w(t)) (23)

= a1(s) + a2(t), t, s ≥ 0,

which implies that

A(t)A(s) = A(s)A(t), t, s ≥ 0.

Specifically, the need for the commutation condition (23) constitutes the tech-
nical motivation for the use of the same nonlinear force of infection g and
removal rate w for infectives in both patches; if different forces of infection g1

and g2 or removal rates w1, w2 were employed, then the equality

g1(I
∗
w1

(t)) + g2(I
∗
w2

(s)) = g1(I
∗
w1

(s)) + g2(I
∗
w2

(t))

would not necessarily hold. Note that a general approach towards solving a
large class of 2-dimensional nonautonomous systems which overlap with the
(reduced) system u′(t) = A(t)u(t), with A(t) as above, has been devised by
Martinuşi in [14] using a certain matrix representation theorem. A fundamen-
tal matrix of (20) is then

Φ(t) =

(
exp(

∫ t
0 A(s)ds) O2

Z(t) e−wtI2

)
,
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where

Z(t) =
∫ t

0
ew(s−t)g(I∗w(s))e

∫ s
0
A(τ)dτds.

Consequently, the corresponding monodromy matrix is

M =


(

1− δ1 0
0 1− δ2

)
exp(

∫ T
0 A(s)ds) O2

(1− δI)Z (1− δI)e−wT I2


and since 0 < (1−δI)e−wT < 1, the stability of the susceptible pest-eradication
periodic solution E∗ is then determined by the eigenvalues of the matrix

M1 =

(
1− δ1 0

0 1− δ2

)
exp

(∫ T

0
A(s)ds

)
.

Let us note that∫ T

0
A(s)ds =

(
(r1 − d12)T −

∫ T
0 g(I∗w(t))dt d21T

d12T (r2 − d21)T −
∫ T
0 g(I∗w(t))dt

)
.

The eigenvalues of
∫ T
0 A(s)ds are given by

λ1 =
1

2
(α1 + α2 +

√
(α1 − α2)2 + 4d12d21T 2)

λ2 =
1

2
(α1 + α2 −

√
(α1 − α2)2 + 4d12d21T 2),

where

α1 = (r1 − d12)T −G;

α2 = (r2 − d21)T −G;

G =
∫ T

0
g(I∗w(t))dt.

Note that

λ1 ≥
1

2
(α1 + α2 + |α1 − α2|) = max(α1, α2);

λ2 ≥
1

2
(α1 + α2 − |α1 − α2|) = max(α1, α2);

λ1 = αi ⇔ αi = max(α1, α2) and d12d21 = 0;

λ2 = αi ⇔ αi = min(α1, α2) and d12d21 = 0;

λ1 = λ2 ⇔ α1 = α2 and d12d21 = 0.
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If both dispersal rates d12 and d21 are null (there is no dispersal between
patches, that is), then

∫ T

0
A(s)ds =

(
α1 0
0 α2

)

and

exp

(∫ T

0
A(s)ds

)
=

(
eα1 0
0 eα2

)
, M1 =

(
(1− δ1)eα1 0

0 (1− δ2)eα2

)
.

In this case, the eigenvalues of M1 are

µ1 = (1− δ1)eα1 , µ2 = (1− δ2)eα2

and it follows that E∗ is locally stable if

max((1− δ1)eα1 , (1− δ2)eα2) ≤ 1 (24)

and unstable if the opposite inequality holds.
If both dispersal rates d12 and d21 are nonzero, then

∫ T
0 A(s)ds can be put

into the diagonal form as

∫ T

0
A(s)ds =

(
d21T d21T
λ1 − α1 λ2 − α1

)(
λ1 0
0 λ2

)(
d21T d21T
λ1 − α1 λ2 − α1

)−1

.

It follows that

exp

(∫ T

0
A(s)ds

)

=

(
d21T d21T
λ1 − α1 λ2 − α1

)(
eλ1 0
0 eλ2

)(
d21T d21T
λ1 − α1 λ2 − α1

)−1

=

 (λ1−α1)eλ2−(λ2−α1)eλ1

λ1−λ2

d21T (eλ1−eλ2 )
λ1−λ2

(λ1−α1)(λ2−α1)(eλ2−eλ1 )
d21T (λ1−λ2)

(λ1−α1)eλ1−(λ2−α1)eλ2

λ1−λ2

 .
Consequently,

M1 =

 (1− δ1) (λ1−α1)eλ2−(λ2−α1)eλ1

λ1−λ2
(1− δ1)d21T (eλ1−eλ2 )

λ1−λ2

(1− δ2) (λ1−α1)(λ2−α1)(eλ2−eλ1 )
d21T (λ1−λ2)

(1− δ2) (λ1−α1)eλ1−(λ2−α1)eλ2

λ1−λ2

 .
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It is easy to see that

TrM1 = (1− δ1)
(λ1 − α1)e

λ2 − (λ2 − α1)e
λ1

λ1 − λ2

+(1− δ2)
(λ1 − α1)e

λ1 − (λ2 − α1)e
λ2

λ1 − λ2

and since λ1 − α1 > 0, λ2 − α1 < 0, λ1 − λ2 > 0 it is seen that TrM1 > 0.
Also,

detM1 =
(1− δ1)(1− δ2)

(λ1 − λ2)2
(T1 + T2)

= (1− δ1)(1− δ2)eλ1+λ2

= (1− δ1)(1− δ2)eα1+α2

≥ 0,

where

T1 = ((λ1 − α1)e
λ2 − (λ2 − α1)e

λ1)((λ1 − α1)e
λ1 − (λ2 − α1)e

λ2)

T2 = (eλ1 − eλ2)2(λ1 − α1)(λ2 − α1)

and, by a similar computation,

(TrM1)
2 − 4 detM1

= (T3 + T4)
2 − 4(1− δ1)(1− δ2)eλ1+λ2

= (T3 − T4)
2

+
4(1− δ1)(1− δ2)

(λ1 − λ2)2
[−(λ1 − α1)(λ2 − α1)] (eλ1 − eλ2)2 > 0,

where

T3 = (1− δ1)
(λ1 − α1)e

λ2 − (λ2 − α1)e
λ1

λ1 − λ2

T4 = (1− δ2)
(λ1 − α1)e

λ1 − (λ2 − α1)e
λ2

λ1 − λ2

It follows that M1 has two distinct positive eigenvalues µ1, µ2 given by

µ1 =
1

2

(
TrM1 +

√
(TrM1)2 − 4 detM1

)
,

µ2 =
1

2

(
TrM1 −

√
(TrM1)2 − 4 detM1

)
.
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Consequently, since 0 < µ2 < µ1, the trivial periodic solution E∗ is locally
stable if

TrM1 +
√

(TrM1)2 − 4 detM1 ≤ 2 (25)

and unstable if the converse inequality holds. Note also that

TrM1 = (α2−α1)(δ2−δ1)

2
√

(α1−α2)2+4d12d21T 2
(eλ2 − eλ1) + 1

2
(2− δ1 − δ2)(eλ1 + eλ2)

and

(TrM1)
2 − 4 detM1

=
1

4[(α1 − α2)2 + 4d12d21T 2]

[
(α2 − α1)(2− δ1 − δ2)(eλ2 − eλ1)

+
√

(α1 − α2)2 + 4d12d21T 2(δ1 − δ2)(eλ1 + eλ2)
]2

+
4(1− δ1)(1− δ2)

(α1 − α2)2 + 4d12d21T 2
d12d21T

2(eλ1 − eλ2)2.

If one dispersal rate is zero and the other is nonzero, the stability of E∗ depends
upon whether or not α1 = α2. If α1 6= α2, one arrives again by a similar
argument at the same stability condition (25) via computing the eigenvectors
of
∫ T
0 A(s)ds in terms of d12 instead of d21. If α1 = α2 = α, then

exp

(∫ T

0
A(s)ds

)
= eα

(
1 d21T

d12T 1

)

and
∫ T
0 A(s)ds is triangular. It follows that

M1 = eα =

(
1− δ1 (1− δ1)d21T

(1− δ2)d12T 1− δ2

)
and M1 is triangular as well. The eigenvalues of M1 are then

µ1 = eα(1− δ1), µ2 = eα(1− δ2)

and the stability condition is

max(eα(1− δ1), eα(1− δ2)) ≤ 1, if δ1 6= δ2,

respectively
max(eα(1− δ1), eα(1− δ2)) < 1, if δ1 = δ2. (26)

As the interpretation of the local stability condition is rather difficult, we shall
concentrate in the following on several particular cases.
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5.1. No dispersal (d12 = d21 = 0)

In this case, as previously seen, the stability condition reads as

max((1− δ1)eα1 , (1− δ2)eα2) ≤ 1.

It then follows that E∗ is stable if the pests can be eradicated in each isolated
patch.

5.2. No chemical control (δ1 = δ2 = 0)

If one dispersal rate is nonzero, the other is zero and α1 = α2 = α, it follows
that the stability condition (26) reduces to α < 0, which does not depend on
the value of the nonzero dispersal rate. This is justified, since in this situation
the conditions in both patches are similar, so the movement of pests from one
patch to another does not modify essentially the structural properties of the
system.

If both dispersal rates are nonzero or only one dispersal rate is nonzero but
α1 6= α2, it follows that

TrM1 = (λ1−α1)eλ2−(λ2−α1)eλ1

λ1−λ2
+ (λ1−α1)eλ1−(λ2−α1)eλ2

λ1−λ2

= eλ1 + eλ2

and
detM1 = eλ1+λ2 ,

from which we deduce that

µ1 = max
(
eλ1 , eλ2

)
and the sufficient condition for stability is

E(r1, r2, d12, d21, G, T ) ≤ 0,

where we denote

E(r1, r2, d12, d21, G, T ) = (r1 − d12)T + (r2 − d21)T − 2G

+
√

[(r1 − d12)T − (r2 − d21)T ]2 + 4d12d21T 2.

We now further specialize this result to several particular cases in order to dis-
cuss the effects of dispersal upon the success of the impulsive control strategy.
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5.2.1. Both patches are asymptotically stable without
dispersal

In this situation, r1T −G < 0, r2T −G < 0. Then

E(r1, r2, d12, d21, G, T )

= (r1T −G) + (r2T −G)− (d12T + d21T )

+
√

(r1T − r2T )2 − 2(r1T − r2T )(d12T − d21T ) + (d12T + d21T )2

≤ (r1T −G) + (r2T −G) + |r1T − r2T |
= 2 max(r1T −G, r2T −G)

< 0,

so E∗ remains stable regardless of the value of the dispersion rates d12 and d21.
That is, the susceptible pests can be eradicated regardless of the value of the
dispersion rates if they can be eradicated in each patch in isolation.

5.2.2. Both patches are unstable without dispersal

In this situation, r1T −G > 0, r2T −G > 0. Then

E(r1, r2, d12, d21, G, T )

= (r1T −G) + (r2T −G)− (d12T + d21T )

+
√

(r1T − r2T )2 − 2(r1T − r2T )(d12T − d21T ) + (d12T + d21T )2

≤ (r1T −G) + (r2T −G)− |r1T − r2T |
= 2 min(r1T −G, r2T −G)

> 0,

so E∗ is unstable regardless of the value of the dispersal rates. That is, in this
situation the susceptible pests persist regardless of the value of the dispersal
rates if they persist in each patch in isolation.

5.2.3. One patch is unstable and one patch is asymptotically
stable without dispersal

It is seen that

limd12→0, d21→0E(r1, r2, d12, d21, G, T ) = r1T + r2T − 2G+ |r1T − r2T |
= max(r1T −G, r2T −G)
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and consequently E∗ is unstable for small dispersal rates. Also

E(r1, r2, d12, d21, G, T ) = (r1T −G) + (r2T −G)

+
(r1T − r2T )2 − 2(r1T − r2T )(d12T − d21T )

T5 + (d12T + d21T )
,

where

T5 =
√

(r1T − r2T )2 − 2(r1T − r2T )(d12T − d21T ) + (d12T + d21T )2.

As a result, if d12 = d21 = D > 0, then

E(r1, r2, D,D,G, T ) = (r1T−G)+(r2T−G)+
(r1 − r2)2T 2√

(r1 − r2)2T 2 + 4D2T 2 + 2DT

and

limD→∞

[
(r1 −D)T + (r2 −D)T − 2G+

√
(r1 − r2)2T 2 + 4D2T 2

]
= (r1T −G) + (r2T −G)

It is seen that E∗ can be stabilized by large equal dispersion rates provided
that (r1T −G) + (r2T −G) < 0, since in this situation the dispersal levels the
differences between patches in the long term. If the opposite inequality holds,
then E∗ is unstable regardless of the value of D, since the unstable patch has
a larger destabilizing potential.

If one dispersal rate is zero and the other is nonzero, then

E(r1, r2, d12, d21, G, T ) = 2 max((r1 − d12)T, (r2 − d21)T )− 2G

= 2 max((r1 − d12)T −G, (r2 − d21)T −G).

Consequently, in a system with one stable and one unstable patch the pests
can be always driven to extinction by a large enough dispersal rate from the
unstable to the stable patch provided that the dispersal rate from the stable
patch to the unstable patch is zero. Conversely, if the dispersal rate from the
unstable patch to the stable patch is zero, E∗ remains unstable regardless of
the value of the dispersal rate from the stable patch to the unstable patch. A
valid pest control strategy would then be to discourage the dispersal from the
stable patch to the unstable patch (which is detrimental to the success of the
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control strategy), while encouraging the dispersion from the unstable patch to
the stable patch (which is beneficial to the success of the control strategy).
Consequently, while in some situations large dispersion rates would be ben-
eficial, in other situations they will just cause a more serious pest outbreak.
It is also to be noted that the stability condition (25) is significantly more
complicated than its single-patch counterpart (4) and consequently the patch
structure induces a nontrivial level of complexity.

As a consequence, it is seen that if both individual patches are stable or
unstable, the stability or lack thereof is transmitted to the system at large
regardless of the values of the dispersal rate. Note the similarity between our
result and those obtained by Takeuchi [16] for a non-patched, non-controlled
model. If one patch is stable and the other is unstable, the susceptible pests
can be eradicated in certain conditions if large dispersal rates are permitted,
although the system will certainly be unstable for small dispersal rates. In
the same conditions, the susceptible pests can always be eradicated if the
dispersal from the stable patch to the unstable patch is 0, while the dispersal
from the unstable patch to the stable patch is large enough. Similarly, the
susceptible pests can be eradicated in both patches if G is large enough, that
is, if enough many pests are released periodically (µ is large enough) or the
chemical control is efficient enough (δ1 and δ2 are both large enough), although
in concrete situations this effort may not necessarily be cost-effective.

Further developments of this model include considering the effect of dis-
persal of infective pests between patches as well as using different forces of
infection and reduction rates of infective pest populations due to the use of
the chemical control in each patch. Another possible research direction is to
consider the permanence of the patched system. This, however, is left for
future work.
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