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The goal of a future free from schistosomiasis in Ghana can be achieved through
integrated strategies, targeting simultaneously several stages of the life cycle of the
schistosome parasite. In this paper, the transmission of schistosomiasis is modeled as a
multi-scale 12-dimensional system of ODEs that includes vector-host and within-host
dynamics of infection. An explicit expression for the basic reproduction number R0 is
obtained via the next generation method, this expression being interpreted in biolog-
ical terms, as well as in terms of reproductive numbers for each type of interaction
involved. After discussing the stability of the disease-free equilibrium and the existence
and uniqueness of the endemic equilibrium, the Center Manifold Theory is used to show
that for values of R0 larger than 1, but close to 1, the unique endemic equilibrium is
locally asymptotically stable. A sensitivity analysis indicates that R0 is most sensitive to
the natural death rate of the vector population, while numerical simulations of optimal
control strategies reveal that the most effective strategy for the control and possible
elimination of schistosomiasis should combine sanitary measures (access to safe water,
improved sanitation and hygiene education), large-scale treatment of infected popula-
tion and vector control measures (via the use of molluscicides), for a significant amount
of time.
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1. Introduction

Schistosomiasis (also known as bilharziasis and snail fever) is a parasitic disease
caused by trematode worms of the genus Schistosoma.1 There are many species of
Schistosoma, but only five of them are known to infect humans and more than 90%
of all infections are caused by just three of those five, namely, Schistosoma mansoni
(mainly in Africa and South America) and Schistosoma japonicum (mainly in China
and the Philippines), which produce intestinal schistosomiasis, and Schistosoma
haematobium (common in Africa and some countries in the Middle East), which
produces urinary schistosomiasis.2 The other two less common species adapted
to humans are Schistosoma intercalatum (in Africa) and Schistosoma mekongi (in
Cambodia and Laos).3

Schistosomiasis is the second most devastating of all parasitic human diseases,
surpassed only by malaria,4 having caused an estimated loss of 24–29 million
disability-adjusted life years (DALYs) in 2010.5 Also, 240,000 deaths are annually
attributed to schistosomiasis.6 In 2014, an estimated total of 255 million people
residing in 78 countries were at a high risk of infection, no vaccines being available
for the disease.7

Schistosomiasis is transmitted to humans when free swimming parasitic larvae
(cercariae) penetrate the skin of people exposed to infected freshwater. Skin pene-
tration by cercariae is often followed by itchiness, with a rash at the site of cercarial
penetration on the skin.8 Katayama fever, which is an early clinical manifestation
of schistosomiasis, occurs as a results of migration of schistosomula through the
blood or the lymphatic system,9 within 2–12 weeks after the primary exposure to
contaminated water.10 Katayama fever has flu-like symptoms such as fever, fatigue,
myalgia, headache and cough.11

Bladder cancer, liver fibrosis, ascites and hypertension are the advanced and
late stage consequences of S. haematobium.12 S. mansoni and S. japonicum cause
intestinal schistosomiasis, which leads to bowel obstruction, appendicitis and gas-
trointestinal perforation.13 S. japonicum is often associated with cerebral gran-
ulomatous lesions leading to epilepsy, paralysis and meningoencephalitis.14 Also,
schistosomiasis infections cause growth retardation, anaemia, cognitive impairment
and memory deficit in children.15 All Schistosoma species demonstrate narrow
specificity for their intermediate hosts. In this regard, S. mansoni infects Biom-
phalaria (large flat spiral snails), S. japonicum and S. mekongi infect Oncomelania
(small elongate snails), while S. haematobium and S. intercalatum infect Bulinus
(medium ovoid snails). Further details regarding the transmission cycle of schisto-
somiasis and its possible consequences are discussed, for instance, in Refs. 16, 17, 18
and 20.

The current schistosomiasis control strategies include large-scale drug treat-
ment of infected populations with praziquantel (PZQ), promoting health educa-
tion, improving access to safe water and sanitation, together with vector control
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measures, by reducing the vector (snail) population through the use of mollusci-
cides. However, large-scale drug administration, which is currently the main control
strategy, does not prevent reinfection, and infection rates tend to return to high
values within 24 months.21 Also, the onset of resistance of some snail species to
molluscicides calls for a better understanding of the process of disease transmission
and a development of integrated control strategies for the prevention and control
of schistosomiasis.

The disease is endemic in Ghana, being widespread across all 10 regions of
this country.2 From Figs. 1 and 2, one may observe that S. haematobium is highly
endemic in all parts of the country while S. mansoni is highly endemic in the west-
ern and upper east regions. Several attempts to estimate the population infected or
at risk of contracting schistosomiasis in Ghana have been made in the last decade.
In 2008, it was estimated that 8.5 million were at high risk of infection with schisto-
somiasis out of a total population of about 23.8 million, while in 2010, this number
increased to 9.5 million.22

The mathematical modeling of infectious diseases has become an important
tool in understanding the dynamics of disease transmission and in decision making
regarding intervention programs for disease control. The first mathematical models
of schistosomiasis were developed in 1965.24,25 Those models influenced subsequent
modeling approaches (see Refs. 26–29).

Fig. 1. Endemic areas of S. haematobium in Ghana as of 2015 (data obtained from Ref. 23).
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Fig. 2. Endemic areas of S. mansoni in Ghana as of 2015 (data obtained from Refs. 23).

Many of the earlier models focused only on the transmission of the disease
in human and vector populations. However, a model in which time delay is used
to describe the dynamics of schistosomes has recently been proposed in Ref. 30.
This model keeps track of multiple resistant schistosome strains, of the mating
structure of the parasite and of the biological complexity associated with the life
cycle of the parasite. A global analysis of a model of schistosomiasis transmission
which is subject to biological control has been carried out in Ref. 31. Mathematical
models tracing the life of cercariae from the moment they enter the body up to
the egg production stage and the type of immune responses to infection have been
constructed in Refs. 32 and 33.

The disease has a complex transmission cycle, which makes the parameters
associated with disease transmission difficult to estimate. In view of this, research
has been conducted on parameter estimation for schistosomiasis transmission. In
Ref. 34, the parameters governing the transmission dynamics of schistosomes were
given an estimation, while in Ref. 35, the dynamics of infection with S. japonicum in
villagers of Leyte in the Philippines was modeled and estimated. Temperature and
environmental factors have been noted to influence the transmission of schistosomi-
asis. The impact of long-term temperature changes on the epidemiology and control
of schistosomiasis has been investigated in Ref. 36, the disease being noted to be
endemic at temperatures between 18◦C and 28◦C.39 In Ref. 40, a six-dimensional
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model with five time delays was considered, the effect of time delays on transmission
dynamics of schistosomiasis being then investigated.

These models have provided useful information for understanding the dynamics
of schistosomiasis transmission. However, very few studies on applying optimal con-
trol theory to schistosomiasis transmission models have been carried out. Notably,
Pontryagin’s maximum (minimum) principle41 can be successfully used for decision
making in various applications. In Ref. 42, optimal control methods were used to
determine the optimal vaccination strategy to reduce the sizes of the populations
of susceptible and infective individuals for a general SIR epidemic model, while in
Ref. 43, optimal strategies for a cost-effective control of malaria transmission have
been derived. It has been concluded in Ref. 44 that an integrated strategy had the
highest impact in the control of Aedes aegypti mosquito.

According to Refs. 2 and 16, vaccines for schistosomiasis are still in the funda-
mental stages of development and mass administration of PZQ, which is the main
control measure, cannot prevent reinfection, in addition to causing several other
issues. Therefore, an integrated control strategy targeting simultaneously several
stages of the life cycle of the schistosome parasite is the sole approach having the
potential to eradicate schistosomiasis. It is then meaningful to formulate a mathe-
matical model which is subject to several control strategies in order to determine
the impact of integrated control on the dynamics of schistosomiasis transmission
in Ghana. To this purpose, we develop a multi-scale mathematical model for schis-
tosomiasis transmission that includes within-host (human) and vector (snail)-host
dynamics of infection.

First, we analyze the model without control measures and investigate its stabil-
ity properties. We perform a sensitivity analysis on the basic reproduction number
R0 to determine the parameters to which R0 is the most sensitive. Interpreting the
results of the sensitivity analysis, we are led to consider three control measures to
steer the behavior of the model. Optimal control theory is subsequently used to
investigate the effectiveness of integrating the control measures, namely improv-
ing access to safe water, sanitation and hygiene education, large-scale treatment of
infected population groups and reducing the vector (snail) population by the use
of molluscicides, upon the transmission dynamics of schistosomiasis.

The remaining part of the paper is organized as follows. In Sec. 2, we give a
description of the within-host and vector-host schistosomiasis transmission models,
stating also the biological assumptions and definitions of the various parameters.
In Sec. 3, we determine the disease-free and the endemic equilibria, along with
an explicit expression of the basic reproduction number. In Sec. 4, we perform
a sensitivity analysis on the basic reproduction number. In Sec. 5, we state the
control problem as well as the objective functional to be minimized and apply the
Pontryagin’s minimum principle to find the necessary conditions for the optimal
control. In Sec. 6, we complement our theoretical analysis with several numerical
simulations. The final conclusions are presented in Sec. 7.
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2. Model Formulation

To formulate our model, we employ standard SEI models for both hosts (humans)
and vectors (snails), in which we further incorporate the life cycle of the schis-
tosome parasite in two different environments, namely the external environment
and the human body (leading to within-host parasite dynamics). The extended
model is based on monitoring the dynamics of 12 populations at any time t. These
populations are as follows:

• Susceptible humans SH(t), exposed humans EH(t) and infected humans IH(t),
for the human hosts;

• Susceptible snails Sv(t), exposed snails Ev(t) and infected snails Iv(t), for the
vectors;

• Cercariae C(t) and miracidia M(t), for the parasites in the external environment;
• Cercariae CH(t), immature schistosome worms WI(t), mature schistosome worms
Wm(t) and worm eggs eH(t), for the parasites within the humans.

To construct our model, we make the following biological assumptions:

• There is no vertical transmission of schistosomiasis from mother to the newborn
child.

• The human population acquire the disease through contact with cercariae C(t)
and the vector population acquire the disease through contact with miracidia
M(t).

• There is no immigration of infectious humans.
• Infected snails do not reproduce, due to castration by the miracidia, which is

due to the consumption of reproductive tissues within the snail hosts to release
cercariae.

• There is no immune response in neither snail nor human populations.
• Heterogeneity of host and vector populations, respectively, for disease transmis-

sion and progression are not considered.

Humans are recruited into the susceptible population SH(t) at a constant rate
ΛH . The susceptible humans either die at a natural death rate µH or move to the
exposed class EH(t) due to infection caused by the cercariae C(t) through skin
penetration at a saturation rate λH(t) (see Ref. 39) given by

λH(t) =
βHC(t)
C0 + C(t)

, (2.1)

in which βH is the maximal rate of exposure to cercariae and C0 is the half satu-
ration constant. The exposed humans do not immediately become infectious, but
rather go through an incubation period for 4–8 weeks. During the incubation period,
the exposed humans experience a local inflammatory response evidenced by a rash,
called swimmer’s itch. The exposed humans either die at a natural death rate µH ,
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or move to the infectious class IH at a rate ψH . The infected humans die at a
natural death rate µH , the additional disease induced death rate being denoted by
δH and recovery rate of infected humans being given by κH . During the incubation
period, the total cercariae population within an exposed human CH(t) is assumed
to be removed through natural death at a constant rate µc or move to the lungs
via blood vessels at a rate αc, where it undergoes developmental changes to become
immature worms denoted by WI(t). These immature worms are assumed to die by
natural causes at a rate µI or migrate to the liver at a rate αI . Due to further
developmental changes, immature worms reach their sexual maturity, pair up and
then migrate through the blood stream to their definitive locations. These occur-
rences are modeled by the ninth equation, the fraction 1/2 capturing the pairing
of immature worms. We denote the total population of mature worms within indi-
viduals by Wm(t) and assume that mature worms die by natural causes at a rate
µm or migrate to their definitive locations at a rate αm. The total population of
schistosome eggs eH(t) within infected humans appears since each worm pair lays
an average of Nm eggs per day after having migrated to its definitive location at
a rate αm. We denote the rate at which the schistosome eggs die inside infected
humans by µe and the rate at which they are excreted by the infected human hosts
into the external environment by αe, the excreted eggs then developing into free
miracidia M(t) at a net rate Neαe. We assume that the free miracidia living in the
external environment die by natural causes at a rate µp or infect susceptible vectors
(snails) Sv(t) at a rate λv(t) (see Ref. 39), where

λv(t) =
βvM(t)

M0 +M(t)
. (2.2)

In (2.2), βv is the maximal rate of exposure to miracidia and M0 is the half satu-
ration constant.

The adult snails are recruited into the susceptible vector compartment at a
constant rate Λv. Susceptible snails die by natural causes at a rate µv or move to
the exposed vector compartment upon infection by miracidia. Exposed snails Ev(t)
die by natural causes at a rate µv, the additional parasite-induced death rate being
denoted by δv. Due to the progression of the disease, the exposed snails proceed to
the infectious compartment Iv(t) at a rate φv. The infected snails die at a natural
death rate µv, the additional parasite-induced death rate being also equal to δv.
After 4–6 weeks, the infected snails begins to shed cercariae at a rate Nsγs, where
Ns is the average number of cercariae shed by each snail per day and γs is the rate
at which infected snails begin to shed cercariae. The cercariae population C(t) in
the external environment infects susceptible humans through skin penetration or
die by natural causes at a rate µs.

To simplify our model, we have not considered the effect of the mating structure,
although there is evidence of natural male bias in the sex ratio of S. mansoni,45,46

being also determined that PZQ is more active against single male schistosoma,
rather than against paired schistosomes.
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On the basis of the above assumptions and remarks, one may construct the
following model:

dSH
dt

= ΛH − λHSH − µHSH + κHIH ,

dEH
dt

= λHSH − (µH + ψH)EH ,

dIH
dt

= ψHEH − (µH + δH + κH)IH ,

dSv
dt

= Λv − λvSv − µvSv,

dEv
dt

= λvSv − (µv + δv + φv)Ev,

dIv
dt

= φvEv − (µv + δv)Iv ,

dCH
dt

= (1 − τ)ωλHSH − (αc + µc)CH ,

dWI

dt
= αcCH − (αI + µI)WI ,

dWm

dt
=
αI
2
WI − (αm + µm)Wm,

deH
dt

= NmαmWm − (αe + µe)eH ,

dM

dt
= NeαeeH − µpM,

dC

dt
= NsγsIv − µsC, (2.3)

for which the state variables and parameter values are listed in Tables 1 to 4 and
the flow diagram is given in Fig. 3.

Table 1. Description of all variables used for the model.

Description Symbol

Size of the susceptible human population SH(t)
Size of the exposed human population EH(t)
Size of the infected human population IH(t)
Size of the susceptible snail population Sv(t)
Size of the exposed snail population Ev(t)
Size of the infected snail population Iv(t)
Size of the cercariae population within exposed humans CH(t)
Size of the immature worms population within exposed humans WI(t)
Size of the mature worms population within exposed humans Wm(t)
Number of worm eggs within infected humans eH(t)
Size of the miracidia population in the environment M(t)
Size of the cercariae population in the environment C(t)
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Table 2. Description of variables and parameters used in the model. The time unit is per day.

Description Symbol Value Range explored Source

Recruitment rate of humans ΛH 800 37
Recruitment rate of vectors Λv 3000 38
Humans progression rate from ψH 0.017857 0.017857– 39

exposed to infected 0.023258
Recovery rate of infected humans κH 0.0005567 19
Vector progression rate from φv 0.034526 0.034526– 39

exposed to infected 0.0465
Disease induced death rate δH 0.00011 0.00002– 39

of humans 0.00014
Natural death rate of humans µH 0.0000438 48
Natural death rate of snails µv 0.0029 36
Disease induced death rate δv 0.002 36

of snails
Maximum exposure rate of βH 0.028 36

humans to cercariae
Maximum exposure rate of βv 0.000127 36

vectors to miracidia
Migration rate of cercariae αc 0.33 0.33–0.897 Estimated

from skin to lungs
Natural death rate of cercariae µc 0.003 0.003–0.05 Estimated

within exposed humans
Migration rate of immature αI 0.0004 0.0004– Estimated

worms from lungs to liver 0.0443
Natural death rate of immature µI 0.000456 0.000456– 17

worms within exposed humans 0.0014
Migration rate of mature worms αm 0.0004 0.0004–0.4 Estimated

from liver to definitive locations
Natural death rate of mature µm 0.000456 0.000456– 17

worms within exposed humans 0.0014
Number of eggs produced within Nm 300 300–3000 32

exposed humans

It is possible to prove via standard arguments that all solutions of the model
(2.3) starting with positive initial data are positivity-preserving and eventually
enter the invariant region:

D = {(SH , EH , IH , Sv, Ev, Iv, CH ,WI ,Wm, eH ,M,C) : 0 ≤ SH , 0 ≤ EH ,

0 ≤ IH , SH + EH + IH ≤ Q1, 0 ≤ Sv, 0 ≤ Ev, 0 ≤ Iv, Sv + Ev + Iv ≤ Q2,

0 ≤ CH ≤ Q3, 0 ≤WI ≤ Q4, 0 ≤Wm ≤ Q5, 0 ≤ eH ≤ Q6, 0 ≤M ≤ Q7,

0 ≤ C ≤ Q8},

where

Q1 =
ΛH
µH

,

Q2 =
Λv
µv
,
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Q3 =
(1 − τ)ω
αc + µc

·Q9,

Q4 =
αc

αI + µI
· 1
αc + µc

·Q9,

Q5 =
αI

αm + µm
· 1
2
· αc
αI + µI

· 1
αc + µc

·Q9,

Q6 =
Nmαm
αe + µe

· αI
αm + µm

· 1
2
· αc
αI + µI

· 1
αc + µc

·Q9,

Q7 =
Neαe
µp

· Nmαm
αe + µe

· αI
αm + µm

· 1
2
· αc
αI + µI

· 1
αc + µc

·Q9,

Q8 =
Nsγs
µs

· Λv
µv
,

Q9 =
βHΛHNsγsΛv

µHC0µsµv + µHNsγsΛv
.

For the sake of brevity, we omit the proof here (see Ref. 47 for related argu-
ments). We then conclude that the model (2.3) is epidemiologically feasible and
mathematically well-posed in D. In addition, the usual results on the existence,
uniqueness and continuation of solutions also hold for (2.3).

Fig. 3. A conceptual diagram of the mathematical model of human schistosomiasis, combining
within-host and vector-host dynamics. The dashed arrows represent the schistosomiasis trans-
mission within hosts and vectors, or between hosts and vectors, while solid arrows represent the
progression of infection.
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Table 3. Description of variables and parameters used in the model. The time unit is per day.

Description Symbol Values Range explored Source

Excretion rate of worm eggs into αe 0.0004 0.0004–0.392 Estimated
the environment

Natural death rate of worm eggs µe 0.0025 0.0025–0.25 12
Miracidia production rate per worm egg Ne 0.01 0.006–0.02 18
Natural death rate of the miracidia µp 2.526 36
Shedding rate of the cercariae by γs 0.0182 0.0158– 36

infected vector (snails) 0.05
Natural death rate of the cercariae µs 0.365 36

in the aquatic environment
Amount of the cercariae shed Ns 4128 3567– 36

by each snail 7895
Half saturation constant M0 108 38

for the miracidia
Half saturation constant C0 9 × 106 38

for the cercariae
Average cercariae uptake ω 1.06 1.02– Estimated

of an exposed individual 4.02
Decay parameter of the cercariae population τ [0, 1] Estimated
Human progression rate from λH

susceptible to exposed
Vector progression rate from λv

susceptible to exposed

Table 4. Description of all variables from Ghana used for the model.

Description Symbol Values Source

Initial size of the susceptible human population in Ghana SH(0) 20,000 23
Initial size of the exposed human population in Ghana EH(0) 200 58
Initial size of the infected human population in Ghana IH(0) 150 57
Recruitment rate of humans in Ghana ΛH 800 37
Natural death rate of humans in Ghana µH 0.0000438 48

3. Model Analysis

3.1. The disease-free equilibrium and its stability

The system (2.3) has two equilibria, the disease-free equilibrium and the endemic
equilibrium. At the disease-free equilibrium, there are no cercariae, miracidia,
worms or eggs and hence there is no infection in either the human or the vec-
tor population. Thus, the model system (2.3) has a disease-free equilibrium E0

given by

E0 =
(

ΛH
µH

, 0, 0,
Λv
µv
, 0, 0, 0, 0, 0, 0, 0, 0

)
. (3.1)

Using the next generation method described in Ref. 50, it follows that the basic
reproduction number of the system (2.3) is given by

R0 =
√
R0H ·R0HS , (3.2)
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in which

R0H =
(1 − τ)ωβHΛH

C0µHµs
· αc
αc + µc

· αI
αI + µI

· Nmαm
αm + µm

· Neαe
αe + µe

· 1
2

and

R0HS =
NsγsβvΛvφv

M0µvµp(µv + δv)(µv + δv + φv)
.

The quantity R0HS has the following biological interpretation. Suppose that a
single infected human is introduced into a completely susceptible snail population,
then the average number of secondary snail infections that result from contact with
the miracidia during the infectious period of the human is given by R0HS .

Also, suppose that a single infected snail is introduced into a completely suscep-
tible human population. Then, the average number of secondary human infections
that result from contact with cercariae during the infectious period of the snail is
given by R0H .

Furthermore, we deduce that the snail to human transmission coefficient R0H

is a product of two other transmission coefficients which are the vector-host (snail
to human) transmission coefficient R0SH and the within-host transmission (within-
human) R0WH which are given by

R0H = R0SH ·R0WH ,

where

R0SH =
(1 − τ)ωβHΛH

C0µHµs

and

R0WH =
αc

αc + µc
· αI
αI + µI

· Nmαm
αm + µm

· Neαe
αe + µe

· 1
2
.

Hence, the basic reproduction number R0 can be computed as

R0 =
√
R0WH ·R0SH ·R0HS ,

keeping track of both vector-host and within-host disease parameters, R0HS , R0SH

and R0WH , respectively.
From the expression of R0, the following deductions are made:

• Reducing the contact of humans with infested cercariae waters through the pro-
visioning of safe drinking water and hygiene education may lead to the control of
the disease via a reduction of the maximum exposure rate of humans to cercariae
βH .

• The natural death rate of the cercariae in the aquatic environment µs and the
natural death rate of miracidia µp have a significant impact on the disease trans-
mission. This suggests that control measures cause an increase in the death rate
of cercariae and miracidia may also lead to the control of the disease.
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• Within host disease parameters such as the penetration rate of cercariae ω, the
migration rate of cercariae from skin to lungs αc, the number of eggs produced
within an exposed human Nm, the migration rate of immature worms from lungs
to liver αI and the migration rate of mature worms from liver to definitive loca-
tions αm contribute significantly to disease transmission and prevalence. This
suggests that effective drugs that can reduce those parameters will facilitate the
control of the disease.

From Theorem 2 of Ref. 50, the following stability result is obtained.

Theorem 3.1. The disease-free equilibrium E0 of (2.3) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1, where R0 is given by (3.2).

3.2. The existence of the endemic equilibrium

At the endemic equilibrium, the vectors (snails) are infected with miracidia and
humans are infected with cercariae. The coordinates of the endemic equilibrium

E∗ = (S∗
H , E

∗
H , I

∗
H , S

∗
v , E

∗
v , I

∗
v , C

∗
H ,W

∗
I ,W

∗
m, e

∗
H ,M

∗, C∗)

verify the equilibrium relations

λ∗HS
∗
H = ΛH − µHS

∗
H + κHI

∗
H , (3.3)

S∗
H =

(µH + ψH)E∗
H

λ∗H
, (3.4)

E∗
H =

(µH + δH + κH)I∗H
ψH

, (3.5)

S∗
v =

Λv
λ∗v + µv

, (3.6)

E∗
v =

λ∗vS∗
v

µv + δv + φv
, (3.7)

E∗
v =

(µv + δv)I∗v
φv

, (3.8)

C∗
H =

(1 − τ)ωλ∗HS
∗
H

αc + µc
, (3.9)

W ∗
I =

αcC
∗
H

αI + µI
, (3.10)

W ∗
m =

αIW
∗
I

αm + µm
· 1
2
, (3.11)

e∗H =
NmαmW

∗
m

αe + µe
, (3.12)
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M∗ =
Neαee

∗
H

µp
, (3.13)

I∗v =
µsC

∗

Nsγs
, (3.14)

where λ∗H and λ∗v are given by

λ∗H =
βHC

∗

C0 + C∗ , (3.15)

λ∗v =
βvM

∗

M0 +M∗ . (3.16)

We may now obtain the following existence and uniqueness result, whose proof is
given in Appendix A.

Theorem 3.2. The system (2.3) has a unique endemic equilibrium

E∗ = (S∗
H , E

∗
H , I

∗
H , S

∗
v , E

∗
v , I

∗
v , C

∗
H ,W

∗
I ,W

∗
m, e

∗
H ,M

∗, C∗)

if and only if R0 > 1.

3.3. Local stability of the endemic equilibrium

Computing the eigenvalues of the Jacobian matrix of (2.3) at the endemic equi-
librium is very tedious. Instead, we employ the approach of Ref. 51 and analyze
the bifurcation of the solutions of (2.3) at the disease-free equilibrium by using the
Center Manifold Theorem. We make the following notations in (2.3):

x1 = SH , x2 = EH , x3 = IH , x4 = Sv, x5 = Ev, x6 = Iv,

x7 = CH , x8 = WI , x9 = Wm, x10 = eH , x11 = M,x12 = C.

The model system (2.3) is then written in vector form as

dX

dt
= H(X), (3.17)

in which X = (x1, x2, x3, . . . , x12)T and H = (h1, h2, h3, . . . , h12)T .
Suppose that βv = gβH and let βH be the bifurcation parameter. Solving the

equation R0 = 1 gives us βH = β∗, with

β∗ =

√√√√√
2C0µHµs(µv + δv)µvM0µp(µv + δv + φv)(αc + µc)

× (αI + µI)(αm + µm)(αe + µe)
(1 − τ)ωΛHNsγsgΛvφvαcαINmαmNeαe

.

The following result, whose proof is given in Appendix B, characterizes the
stability of E∗ for values of R0 which are larger than 1, but close to 1.

Theorem 3.3. The unique endemic equilibrium E∗ is locally asymptotically stable
for R0 > 1, but close to 1.
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4. A Sensitivity Analysis of R0

In what follows, we shall investigate how R0 responds to changes in the parameters,
in order to determine the parameters whose changes have the highest impact on R0

and have the potential to lead to effective control and elimination of the disease. The
normalized forward-sensitivity index of a variable Q with respect to a parameter p
(or the elasticity of Q with respect to p) is defined as

ΥQ
p =

p

Q
· ∂Q
∂p

.

This index indicates how sensitive Q is to changes of parameter p. Precisely, a
positive (negative) index indicates that an increase in the parameter value results
in an increase (decrease) of Q.52,53

We derive the sensitivity of R0 to each of the 29 within-host and vector-host
parameters described (See also Appendix C). From Fig. 4, R0 is most sensitive to
µv the natural death rate of vectors, followed by (Ns, γs, Nm, βv, βH ,ΛH ,Λv) and
(µm, µH , µp, µs, µe). Also, R0 is least sensitive to δH , the disease induced death rate
of humans and to δv, the disease induced death rate of vectors.

One sees that ΥR0
µv

= −2, which means that increasing or (decreasing) µv the
natural death rate of the vector by 10%, decreases or (increases) R0 by 20%. Sim-
ilarly, the normalized sensitivity indices for all parameters in (µm, µH , µp, µs, µe)
are equal to −1, which means that increasing or (decreasing) these parameters
(µm, µH , µp, µs, µe) by 10%, decreases or (increases) R0 by 10%. Furthermore, the
sensitivity indices for all parameters in (Ns, γs, Nm, βv, βH ,ΛH ,Λv) are equal to
1, this implies that increasing or (decreasing) these parameters by 10% increases
(decreases) R0 by 10%.

Fig. 4. Sensitivity indices for R0 against model parameters.
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The above remarks suggest that control strategies that effectively reduce the
natural death rate of vectors µv, the number of cercariae shed by each snail per
day Ns, the shedding rate γs of cercariae by infected vector (snail), the number
of eggs produced within the exposed human Nm, the maximum exposure rate βv
of vector to miracidia, the maximum exposure βH of humans to cercariae should
be used to control the disease transmission effectively. Also, increases in cercariae
death rate, miracidia death rate, mature worm death rate and worm eggs death
rate will all lead to a corresponding decrease in R0, hence all control strategies
to reduce the transmission of schistosomiasis effectively must strive for achieving
higher death rates of worm eggs µe, mature worm eggs µm, miracidia µp and cer-
cariae µs. Hence, from a mathematical viewpoint, these strategies are u1 (access to
safe water, improved sanitation and hygiene education), u2 (large-scale treatment
of infected population groups) and u3 (reducing the vector (snail) population by
the use of molluscicides), which would be specified in our following model.

5. Optimal Control Strategies

In this section, we extend our model (2.3) by introducing three time-dependent con-
trol measures, namely u1(t) (access to safe water, improved sanitation and hygiene
education), u2(t) (large-scale treatment of infected population groups) and u3(t)
(reducing the vector (snail) population by the use of molluscicides) to curtail the
spread of schistosomiasis. It is assumed that in the human population, the associ-
ated force of infection is reduced by a factor of 1/(1 + u1(t)), as more susceptible
humans gain access to safe water, improved sanitation and hygiene education. Fur-
thermore, the disease induced death rate is reduced by a factor of 1/(1 + u2(t))
as more infected humans are treated. The reproduction rate of the vector (snail)
population is also reduced by a factor of 1/(1 + u3(t)) as more snails are removed.

The model system (2.3) becomes

dSH
dt

= ΛH − λHSH
1 + u1(t)

− µHSH + κHIH ,

dEH
dt

=
λHSH

1 + u1(t)
− (µH + ψH)EH ,

dIH
dt

= ψHEH − (µH +
δH

1 + u2(t)
)IH − κHIH ,

dSv
dt

=
Λv

1 + u3(t)
− λvSv − µvSv,

dEv
dt

= λvSv − (µv + δv)Ev − φvEv,

dIv
dt

= φvEv − (µv + δv)Iv,
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dCH
dt

=
(1 − τ)ωλHSH

1 + u1(t)
− (αc + µc)CH ,

dWI

dt
= αcCH − (αI + µI)WI ,

dWm

dt
=
αI
2
WI − (αm + µm)Wm,

deH
dt

= NmαmWm − (αe + µe)eH ,

dM

dt
= NeαeeH − µpM,

dC

dt
= NsγsIv − µsC, (5.1)

with the given objective function

J(u1, u2, u3) =
∫ T

0

[c1IH + c2Nv + c3u
2
1 + c4u

2
2 + c5u

2
3]dt, (5.2)

where Nv is the total vector population, T is the final time and the coefficients
c1, c2, c3, c4, c5 are positive weights. Our aim is to minimize the total number of
infected humans and the snail population while minimizing the cost of control
u1(t), u2(t), u3(t). Thus, we search for an optimal control u∗1, u

∗
2, u

∗
3 such that

J(u∗1, u
∗
2, u

∗
3) = min

u1, u2, u3
{J(u1, u2, u3) |u1, u2, u3 ∈ Ω}, (5.3)

where the control set is

Ω = {(u1, u2, u3) |ui : [0, T ] → [0,∞) Lebesgue measurable, i = 1, 2, 3}.
The terms c1IH and c2Nv represent the cost of infection and cost of reducing
the vector population, respectively, while c3u2

1 is the cost of access to safe water,
improved sanitation and hygiene education. Also, c4u2

2 is the cost of large-scale
treatment of infected population groups and c5u2

3 is the cost of reducing the vector
(snail) population by the use of molluscicides. The necessary conditions that an
optimal control must satisfy come from the Pontryagin’s Minimum Principle.41 This
principle converts Eqs. (5.1) and (5.2) into a problem of point-wise minimizing a
Hamiltonian H with respect to (u1, u2, u3).

H = c1IH + c2Nv + c3u
2
1 + c4u

2
2 + c5u

2
3

+λSH

{
ΛH − λHSH

(1 + u1(t))
− µHSH + κHIH

}

+λEH

{
λHSH

(1 + u1(t))
− (µH + ψH)EH

}

+λIH

{
ψHEH −

(
µH +

δH
(1 + u2(t))

)
IH − κHIH

}
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+λSv

{
Λv

(1 + u3(t))
− λvSv − µvSv

}

+λEv{λvSv − (µv + δv)Ev − φvEv}

+λIv{φvEv − (µv + δv)Iv} + λCH

{
(1 − τ)ωλHSH

(1 + u1(t))
− (αc + µc)CH

}

+λWI{αcCH − (αI + µI)WI} + λWm

{αI
2
WI − (αm + µm)Wm

}

+λeH{NmαmWm − (αe + µe)eH}

+λM{NeαeeH − µpM}

+λC{NsγsIv − µsC},

where λSH , λEH , λIH , λIH , λSv , λEv , λIv λCH , λWI , λWm , λeH , λM and λC are the
adjoint variables or co-state variables.41

−dλSH

dt
=

∂H

∂SH
= −

[
λH

(1 + u1(t))
+ µH

]
λSH +

λH
(1 + u1(t))

λEH

+
(1 − τ)ωλH
(1 + u1(t))

λCH ,

−dλEH

dt
=

∂H

∂EH
= −(µH + ψH)λEH + ψHλIH ,

−dλIH

dt
=

∂H

∂IH
= c1 + κHλSH −

[
µH +

δH
(1 + u2(t))

+ κH

]
λIH ,

−dλSv

dt
=
∂H

∂Sv
= c2 − [λv + µv]λSv + λvλEv ,

−dλEv

dt
=

∂H

∂Ev
= c2 − [(µv + δv) + φv]λEv + φvλIv ,

−dλIv

dt
=
∂H

∂Iv
= c2 − [(µv + δv)]λIv +NsγsλC ,

−dλCH

dt
=

∂H

∂CH
= −(αc + µc)λCH + αcλWI ,

−dλWI

dt
=

∂H

∂WI
= −(αI + µI)λWI +

αI
2
λWm ,

−dλWm

dt
=

∂H

∂Wm
= −(αm + µm)λWm +NmαmλeH ,

−dλeH

dt
=

∂H

∂eH
= −(αe + µe)λeH +NeαeλM ,
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−dλM
dt

=
∂H

∂M
=

βvM0Sv
(M0 +M)2

(λEv − λSv ) − µpλM ,

−dλC
dt

=
∂H

∂C
=

βHC0SH
(C0 + C)2(1 + u1(t))

(λEH − λSH )

+
(1 − τ)ωβHC0SH

(C0 + C)2(1 + u1(t))
λCH − µsλC .

The transversality conditions are

λSH (T ) = λEH (T ) = λIH (T ) = λSv (T ) = λEv (T ) = λIv (T ) = λCH (T ) = λWI (T )

= λWm(T ) = λeH (T ) = λM (T ) = λC(T ) = 0.

On the interior of the control set, where 0 < ui < 1, for i = 1, 2, 3, we have

∂H

∂u1
= 2c3u1 +

(
λHSH

(1 + u1(t))2

)
(λSH − λEH ) −

(
(1 − τ)ωλHSH
(1 + u1(t))2

)
λCH

∂H

∂u2
= 2c4u2 +

(
δHIH

(1 + u2(t))2

)
λIH = 0,

∂H

∂u3
= 2c5u3 −

(
Λv

(1 + u3(t))2

)
λSv = 0.

Let A = λHSH(λSH − λEH − (1 − τ)ωλCH ) and B = δHIHλIH .

We then obtain that

u1 = 1/6
3
√

(6
√

3
√
A(27A− 8 c3) − 54A+ 8 c3)c32

c3

+ 2/3
c3

3

√
(6

√
3
√
A(27A− 8 c3) − 54A+ 8 c3)c32

− 2/3,

u2 = 1/6
3
√

(6
√

3
√
B(27B − 8 c4) − 54B + 8 c4)c42

c4

+ 2/3
c4

3

√
(6

√
3
√
B(27B − 8 c4) − 54B + 8 c4)c42

− 2/3,

u3 = 1/6
3

√
(6

√
3
√

Λv(27 Λv + 8 c5) + 54 Λv + 8 c5)c52

c5

+ 2/3
c5

3

√
(6

√
3
√

Λv(27 Λv + 8 c5) + 54 Λv + 8 c5)c52

− 2/3.

Finally, since in our problem there are no terminal values for the state variables,
we give transversality conditions at the final time T by

λi(T ) = 0, i = 1, 2, 3.
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6. Numerical Simulations

In this section, we investigate, from a numerical viewpoint, the effects of the optimal
control strategies on the spread of schistosomiasis in the Ghanaian population. The
optimal control is determined by solving the optimality system, consisting of 12
ordinary differential equations and representing the state and adjoint equations.
The numerical approach deals with a two-point boundary value problem with the
boundary conditions at t = 0 and t = T by using the Matlab package bvp4c.

Using an integrated control approach which combines all three control mea-
sures at the same time, we investigate and compare the corresponding results of
the numerical simulations. For the numerical simulations, we choose values for the
variables and parameters based on available references, as shown in Tables 2 to 4
above. The other values are estimated or assumed based on data from Ghana health
service. Also, to illustrate the effect of integrated optimal control strategies on the
spread of schistosomiasis in the population, we use the following weight factors:
c1 = 90, c2 = 50, c3 = 60, c4 = 40 and c5 = 35, for which the basic reproduction
number takes the value R0 = 3.0308. Thus, we have considered the spread of schis-
tosomiasis in an endemic population, as it should be the case in a real-life scenario.
The optimal strategy integrates all three control measures and applies them simul-
taneously to control the disease. The optimal control profiles are given in Fig. 6.

6.1. The effects of optimal integrated controls on the susceptible

human population

Figure 5(a) shows a substantial difference in the sizes of the susceptible human
population with and without using controls. Without using controls, the size of
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Fig. 5. Simulations showing the effect of u1 (access to safe water, improved sanitation and hygiene
education), u2 (large-scale treatment of infected population groups) and u3 (reducing the vector
(snail) population by the use of molluscicides) on (a) susceptible human populations, (b) exposed
human populations, (c) infected human populations, (d) infected vector populations.
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Fig. 5. (Continued)

susceptible human population decreases faster and reaches a lower peak, while
in the controlled case, the size of the of susceptible human population decreases
at a slower rate compared and reaches a higher peak. This suggests that more
humans were transferred into the exposed compartment in the uncontrolled
case.
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Fig. 6. Simulation showing the optimal control profile of u1,u2 and u3. Blue dash lines: control
profile of access to safe water, improved sanitation and hygiene education, red solid line: control
profile of large-scale treatment of infected population groups and green solid line: control profile
of reducing the vector (snail) population by the use of molluscicides.
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6.2. The effects of optimal integrated controls on the exposed

human population

As shown in Figure 5(b), the size of the exposed human population decreases rapidly
under the integrated optimal control strategy, compared to what happens in the
uncontrolled case. This suggests that under integrated optimal control strategies,
the prevalence of schistosomiasis will be kept at very low levels.

6.3. The effects of optimal integrated controls on the infected

human population

Again, as seen in Fig. 5(c), the size of the infected human population decreases
rapidly under the integrated optimal control strategy, compared to what happens in
the uncontrolled case. This further suggests that under integrated optimal control
strategies, very few humans will be infected with the disease and prevalence of
schistosomiasis will be kept at very low levels.

7. Conclusions

In this paper, a 12-dimensional system of ordinary differential equations describing
both within-host and vector-host dynamics is formulated to describe the transmis-
sion of schistosomiasis. This model is then analyzed using stability theory, optimal
control theory and numerical simulations. By using the next generation method pro-
posed in Ref. 49 and the approach in Ref. 50, an explicit expression for the basic
reproduction number R0 is derived and interpreted from a biological viewpoint. It
is determined that both within-host and vector-host parameters contribute to R0,
which suggests that both environmental factors and human immune system factors
contribute to the transmission of schistosomiasis.

The stability analysis of the 12-dimensional nonlinear system is investigated
with respect to the values of R0. It is observed that if R0 < 1, then the disease free
equilibrium is locally asymptotically stable, while the system has a single positive
equilibrium provided that R0 > 1. For R0 > 1, the local stability of the unique
positive equilibrium is investigated using the Center Manifold Theorem proposed
in Ref. 51, being determined that the unique endemic equilibrium is locally asymp-
totically stable for R0 > 1, but near 1.

A sensitivity analysis indicates that R0 is sensitive to both within-host and
vector-host parameters, R0 being most sensitive to the natural death rate of vector
population µv. This suggests that periodic harvesting and removal of the vector pop-
ulation should be done to control the spread of the disease. The basic reproduction
number obtained for the model is 3.0308, confirming the fact that schistosomiasis
is endemic in Ghana, as stated in Ref. 22.

Furthermore, optimal control theory is applied to investigate the corresponding
optimal control problem. By using the Pontryagin’s Minimum Principle necessary
conditions are provided for the existence of the optimal solution to the optimal
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control problem. Finally, numerical simulations are presented to verify the theoret-
ical results, to assess the effectiveness and impact of integrated control on schisto-
somiasis transmission.

The numerical simulations indicate that the size of the infected population
decreased considerably in the controlled case. This suggests that a future free from
schistosomiasis can be achieved in Ghana if all three control measures u1 (access to
safe water, improved sanitation and hygiene education), u2 (large-scale treatment
of infected population groups) and u3 (reducing the vector (snail) population by
the use of molluscicides) are implemented at the same time for a significant amount
of time. We suggest that mass drug administration of PZQ should be done together
with periodic harvesting and killing of the vector (snail) population and educating
the public to avoid contact with infected water bodies containing cercariae. There-
fore a clean environment, strong protective human immune system with reduced
vector (snail) population will lead to a minimal transmission of schistosomiasis and
flatworm diseases in Ghana.

As noted in Ref. 54, the reliance of schistosomiasis control programmes upon
the use of a small number of drugs makes those control measures vulnerable to
the emergence of drug resistance. Although there is no evidence of established,
systematic resistance to PZQ, even with the widespread and continuous, long-term
use of this drug, there are occasional reports of individual PZQ treatment failures
for travelers with schistosomiasis.55

Consequently, while our model does not allow for dynamic features, it is impor-
tant to consider, as an avenue of further research, the impact of drug resistance
induced by mass chemotherapy and of host-parasite coevolution. A systematic study
in the latter direction, from an experimental viewpoint, has been performed in
Refs. 54 and 56 observing that drug resistant parasites may incur adaptation costs,
such as a lower reproduction rate, especially since the schistosomes are required to
adapt to both their intermediate and definitive hosts.

The impact of host-parasite coevolution on the definitive hosts (humans)
remains difficult to assess, due to the ethical aspects involved in performing con-
trolled experiments. The intermediate hosts (snails) present, in this regard, a much
better opportunity to investigate the outcome of coevolution. It has been observed
in Ref. 56 that, from the viewpoint of the intermediate host, resistance is domi-
nant over susceptibility, being also a heritable trait, while the resistance phenotype
may be simultaneously displayed against multiple parasite strains, features which
suggest that resistance is a multilocus trait.

A sensitivity analysis meant to predict the impact of long-term temperature
changes upon the prevalence of schistosomiasis, as quantified by the mean worm
burden of a human host, and upon the choice of an appropriate control strategy
has been performed in Ref. 36. While our results are not directly comparable with
those obtained in Ref. 36, since our concern here is incidence, not prevalence, and
the human population is considered to be at equilibrium therein, the model under
investigation involving life stages for snails instead, there are common conclusions,
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amounting to the fact that the natural mortality rate of snails ranks highly, if
not the highest, on the list of most sensitive parameters. Also, the disease-induced
mortality rate of snails ranks is comparatively low on the same list, and, even
though the mean worm burden may increase as high as 10-fold, as seen in Ref. 36,
the size of the infected population is unlikely to change greatly under most common
circumstances.

Our model is only a crude approximation of reality, certain simplifications being
made for the sake of simplicity and tractability. In particular, as suggested by one
of the referees, there should be more impact of the within-host and vector–host
interactions on each other (for instance, the disease-induced death rate of the host
should depend on the parasite load). Although this is highly desirable, since it
greatly improves the accuracy of the model and, due to the stronger coupling of the
sub-models, it has the potential to elicit richer dynamics, it also vastly diminishes
the chances of obtaining explicit and easily interpretable expressions of R0, due to
the subsequent changes in the structure of the next generation matrix and vastly
complicates the discussion on the existence and properties of the endemic equi-
librium. Improving the connection between within-host and vector-host modeling
remains, however, an avenue of further research.
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Appendix A. The Proof of Theorem 3.2

Proof. We shall express all coordinates of E∗, together with λ∗H , λ∗v, in terms of
I∗H . From the equilibrium relations (3.3)–(3.5), it follows that

λ∗H =
µH(µH + ψH)(µH + δH + κH)I∗H

ΛHψH − [(µH + ψH)(µH + δH + κH) − κHψH ]I∗H
, (A.1)

S∗
H =

ΛHψH − [(µH + ψH)(µH + δH + κH) − κHψH ]I∗H
µHψH

. (A.2)

From the equilibrium relations (3.4), (3.5), (3.9)–(3.13), using the notation

P ∗ =
(1 − τ)ωαc
αc + µc

· αI
αI + µI

· Nmαm
αm + µm

· Neαe
αe + µe

· 1
2
,

one obtains that

M∗ = P ∗ · (µH + ψH)(µH + δH + κH)
µpψH

I∗H . (A.3)
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From (3.15), one sees that

C∗ =
C0

βH

λ∗
H
− 1

.

Using the notation

TH = βH [(µH + ψH)(µH + δH + κH) − κHψH ] + µH(µH + ψH)(µH + δH + κH),

we may use the explicit expression of λ∗H in terms of I∗H given by (A.1) to express
C∗ in terms of I∗H as well, in the form

C∗ =
C0µH(µH + ψH)(µH + δH + κH)I∗H

βHΛHψH − THI∗H
. (A.4)

From the equilibrium relations (3.8) and (3.14), it follows that

E∗
v =

µv + δv
φv

· µsC
∗

Nsγs
. (A.5)

Using the equilibrium relations (3.6), (3.7) together with (A.5), it is seen that

S∗
v =

ΛvφvNsγs − (µv + δv + φv)(µv + δv)µsC∗

µvφvNsγs
, (A.6)

λ∗v =
(µv + δv + φv)(µv + δv)µsµvC∗

ΛvφvNsγs − (µv + δv + φv)(µv + δv)µsC∗ . (A.7)

From (A.7), it follows that

λ∗v =
µv

ΛvφvNsγs

(µv+δv+φv)(µv+δv)µsC∗ − 1
,

which, combined with (3.16) leads to

βvM
∗ · ΛvφvNsγs

(µv + δv + φv)(µv + δv)µsC∗ − βvM
∗ = (M0 +M∗)µv.

Substituting now the expressions of M∗ and C∗ given by (A.3) and (A.4), respec-
tively, one obtains that

R2
0M0µv

βHΛHψH
(βHΛHψH − THI

∗
H)

= P ∗ (µH + ψH)(µH + δH + κH)
µpψH

(βv + µv)I∗H +M0µv, (A.8)

which leads to

I∗H =
M0µv(R2

0 − 1)

P ∗ (µH+ψH)(µH+δH+κH)
µpψH

(βv + µv) + R2
0M0µv

βHΛHψH
TH

.

It then follows that I∗H is positive (and unique) if and only if R0 > 1. Let us now
suppose that R0 > 1. From (3.5), it also follows that E∗

H is positive. From (A.8),
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one sees that

βHΛHψH > THI
∗
H ,

which implies that

ΛHψH > [(µH + ψH)(µH + δH + κH) − κHψH ]I∗H .

From (A.1) and (A.2), it also follows that S∗
H and λ∗H are positive. From (3.9)–

(3.13), one obtains that C∗
H , W ∗

I , W ∗
m, e∗H , E∗

L, E∗
W , M∗ are positive. Now, from

(3.16), it also follows that λ∗v is positive, and using (3.6)–(3.8), it is seen that S∗
v ,

E∗
v , I∗v are positive, which finishes the proof.

Appendix B. Proof of Theorem 3.3

Proof. The Jacobian matrix J(E0) of (3.17) computed at β∗ has a right eigenvec-
tor associated with the eigenvalue 0, given by w = (w1, w2, w3, w4, w5, . . . , w12)T ,
in which

w1 =
β∗ΛH

µHC0µH
− κHβ

∗ΛHψH
µH(µH + δH + κH)C0µH(µH + ψH)

,

w2 =
β∗ΛH

C0µH(µH + ψH)

w3 =
β∗ΛHψH

(µH + δH + κH)C0µH(µH + ψH)
,

w4 = − (µv + δv + φv)(µv + δv)µs
µvNsγsφv

,

w5 =
(µv + δv)µs
Nsγsφv

,

w6 =
µs
Nsγs

,

w7 =
(1 − τ)ωβ∗ΛH
C0µH(αc + µc)

,

w8 =
(1 − τ)ωβ∗ΛHαc

C0µH(αI + µI)(αc + µc)
,

w9 =
(1 − τ)ωβ∗ΛHαIαc

2C0µH(αI + µI)(αm + µm)(αc + µc)
,

w10 =
(1 − τ)ωβ∗ΛHNmαmαcαI

2C0µH(αI + µI)(αm + µm)(αc + µc)(αe + µe)
,

w11 =
(1 − τ)ωβ∗ΛHNmαmαcαINeαe

2C0µH(αI + µI)(αm + µm)(αc + µc)(αe + µe)µp
,

w12 = 1.
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The left eigenvector associated with the eigenvalue 0 is v = (v1, v2, v3, . . . , v12),
where

v1 = v2 = v3 = v4 = 0,

v5 =
φvNsγs

(µv + δv + φv)(µv + δv)
,

v6 =
Nsγs

(µv + δv)
,

v7 =
αcαINmαmNeαeβ

∗gΛvφvNsγs
(αc + µc)(αI + µI)(αm + µm)(αe + µe)µpM0µv(µv + δv + φv)(µv + δv)

,

v8 =
αINmαmNeαeβ

∗gΛvφvNsγs
(αI + µI)(αm + µm)(αe + µe)µpM0µv(µv + δv + φv)(µv + δv)

,

v9 =
NmαmNeαeβ

∗gΛvφvNsγs
(αm + µm)(αe + µe)µpM0µv(µv + δv + φv)(µv + δv)

,

v10 =
Neαeβ

∗gΛvφvNsγs
(αe + µe)µpM0µv(µv + δv + φv)(µv + δv)

,

v11 =
β∗gΛvφvNsγs

µpM0µv(µv + δv + φv)(µv + δv)
,

v12 = 1.

The associated second order partial derivatives at the disease-free equilibrium
for the system (3.17) are given by

a =
12∑

k,i,j=1

vkwiwj
∂2hk
∂xi∂xj

(E0, β∗),

b =
12∑

k,i=1

vkwi
∂2hk

∂xi∂βH
(E0, β∗).

Since vk = 0 for k = 1, 2, 3, 4, we consider vk for k = 5, 6, 7, 8, 9, 10, 11, 12. From
system (3.19), the following functions will be used to compute a and b:

h5 =
gβ∗x11x4

M0 + x11
− (µv + δv + φv)x5, (B.1)

h7 =
(1 − τ)ωβ∗x12x1

C0 + x12
− (αc + µc)x7. (B.2)

Hence,

∂2h5

∂x4∂x11
=
gβ∗

M0
,

∂2h7

∂x1∂x12
=

(1 − τ)ωβ∗

C0
,
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∂2h5

∂x2
11

= −2gβ∗Λv
M2

0µv
,

∂2h7

∂x2
12

= −2(1 − τ)ωβ∗ΛH
C2

0µH
.

Therefore,

a = −M0µpµv
Λv

(M0µvµsµpR0H + 2R2
0)

− 2R2
0

(
κHψHβ

∗ΛH(1 − τ)ωβ∗

C2
0µ

2
H(µH + ψH)(µH + δH + κH)

− R0Hµs
µHC0

)
< 0.

Similarly, from Eqs. (B.1) and (B.2), we have

∂2h5

∂x11∂βH
=

gΛv
M0µv

,

∂2h7

∂x12∂βH
=

(1 − τ)ωΛH
C0µH

.

Therefore,

b = R2
0

(
µpµs
β∗ +

(1 − τ)ωΛH
C0µH

)
> 0.

Hence, a < 0 and b > 0. Applying Theorem 4.1 (iv) in Ref. 51, we then obtain that
the endemic equilibrium E∗ is locally asymptotically stable for R0 > 1, but close
to 1.

Appendix C. Certain Sensitivity Indices of R0

(i) The sensitivity index of R0 with respect to µv

ΥR0
µv

=
µv
R0

· ∂R0

∂µv
= −2;

(ii) The sensitivity index of R0 with respect to βv

ΥR0
βv

=
NsγsΛvβv(µv + δv + φv)µvM0µp
µvM0µp(µv + δv + φv)NsγsΛvβv

.

(iii) The sensitivity index of R0 with respect to µc

ΥR0
µc

= − µc
αc + µc

.

(iv) The sensitivity index of R0 with respect to αw

ΥR0
αw

=
µw

αw + µw
.


